Pervious Pavement Systems

The Proposed Statewide Stormwater Rule: How We Got There

At a Meeting of the AMERICAN OF ENVIRONMENTAL ENGINEERS® Proudly Serving the Environmental Engineering Profession since 1955

September 22, 2009

At the Science Applications International Corporation Facilities, Orlando Fl

a program from the

Presentation by Manoj Chopra, P.E., Ph.D. University of Central Florida

9/22/2009

Pervious Pavement

- Good design is important, but also:
- Locate it properly,
- Construct it properly

and Maintain It.

Past Historyof Pervious Pavements

Fair / Poor in most cases due to:

Design errors (poor soil conditions not taken into account, improper locations, inadequate layer thicknesses, edge of pavement not restrained).

Construction problems (specialized

construction crews were NOT utilized as recommended by the product manufacturer).

Improper use/maintenance(ADA)

Requirements, Failure to prevent silts & sands from plugging the pervious pavement void spaces).

UCF Research Publications on pervious pavement

"Compressive Strength of Pervious Concrete Pavements – Final Report", dated January, 2007

"Construction and Maintenance Assessment of Pervious Concrete Pavements -Final Draft", datedJanuary, 2007

> "Hydraulic Performance Assessment of Pervious Concrete Pavements for Stormwater Management Credit -Final Report", dated January, 2007

UCF research publications available at:http://stormwater.ucf.edu/research_publications.asp

Previous Studies at UCF

• Researchers at the Academy Conducted Four Related Studies to Evaluate Performance of Pervious Concrete (PC) Pavements

• First Study –

- Field Testing at Eight Parking PC Lots with average of 12 years
- Created a Model to Simulate Hydraulic Function and Predict its Behavior under Various Rainfall Conditions over One Year Period
- Developed a new field infiltration rate test using an Embedded Ring Infiltrometer Kit(ERIK) – monitor rates through the system (pavement and sub-base) over time

Previous Studies at UCF

- Second Study
 - Investigated Construction and Maintenance
 Techniques used at sites in Florida, Georgia, and South
 Carolina
 - Suggested updates for Construction Specifications for locations with similar soil conditions
 - Evaluated two maintenance techniques Vacuum Sweeping and Pressure Washing
- Third Study -
 - Studied the strength of Pervious Concrete
 - Confirmed Lower Compressive Strength than regular and should not be used for heavy vehicle loads

Previous Studies at UCF

- Fourth Study
 - Evaluated the wear and infiltration of a pervious concrete shoulder along Interstate 4 near Orlando
 - Shoulder showed no visible wear from truck traffic
 - Infiltration rates remained constant during study period of one year
 - Tests of filtered water showed it to be equivalent to rainwater quality
 - It generated significantly less runoff than the asphalt parking areas

I-4 Rest Area [shoulder]

JONES TRAILHEAD

FCPA BUILDING

ERIK Test for Infiltration Rates

EXPERIMENTAL SETUP:

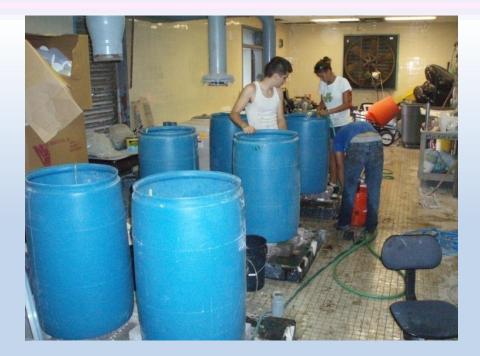
<u>FIELD</u>

<u>In-situ:</u>

Driveway Infiltration and Water Quality Testing:

- PC Pervious Concrete ----1500 sf
- FP Flexipave -----1500 sf
- PP Permeable Pavers ----- 660 sf
- PA Porous Asphalt-----1500 sf
- HP Hanson Pavers ------ 980 sf

LABORATORY


<u>Ex-situ:</u>

Sustainable void space:

- Bench scale [barrels]
- Pilot scale [small containers]

Infiltration:

- 6" cylinders

SMART LAB DRIVEWAY

Slide #13

Pervious Concrete

Slide #14

Clean Fill vs. Black & Gold Sub-base Materials

Water Quality pipe

Infiltrometers

Flexi-Pave

Permeable Pavers

Slide #17

Pervious Brick Pavers

Porous Asphalt

Slide #19

Porous Asphalt Pavement

HANSON PAVERS

(subject to Slide #21

ERIK TESTING

Embedded Ring Infiltrometer Kit

- -In-situ, nondestructive, replicable
- Constant head test
- Measure rate of water
 "upstream" of sample
- 4" embedment into parent soil
 - * (except for research)

06/18/08 DRAFT (subject to revision)Slide #22

Sand Loading of Flexipave

Sand Loading of Pervious Pavers

Sand loading of Porous Asphalt

Wetting of Surface

Compaction

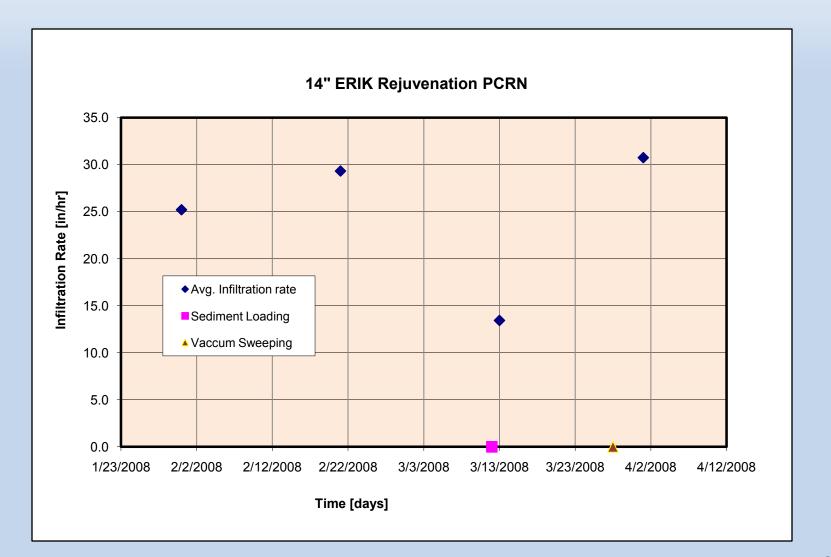
LIMESTONE LOADING

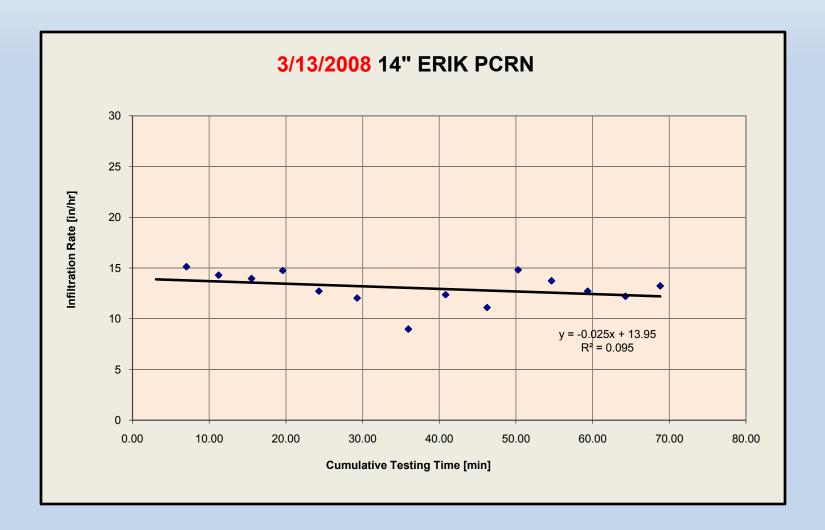
SANDY Surface Ready for Sweeping

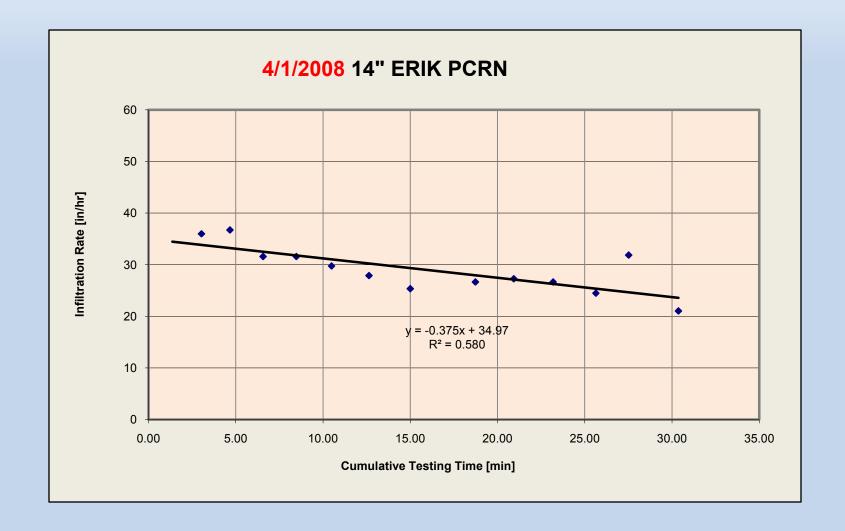
LIME "DUST" Surface Ready for Sweeping

[DRY] Vacuum Sweeping - SAND

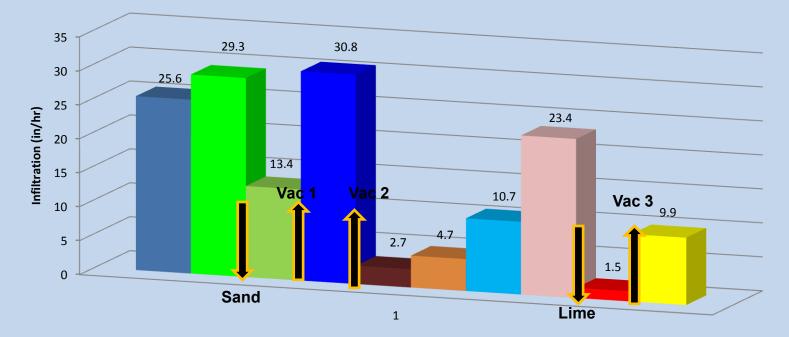
SEDIMENTS REMOVED


Slide #32




Rejuvenation of PC Pavement

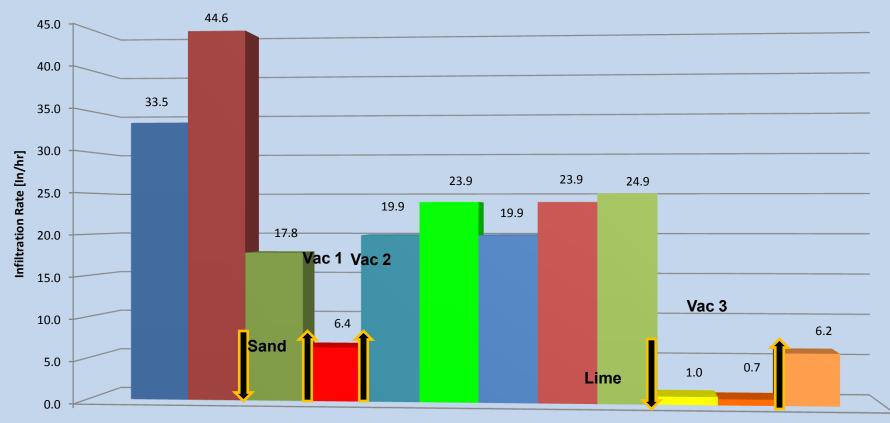
Infiltration test on PC Pavement


Rejuvenation of PC Pavement

Infiltration Test Results

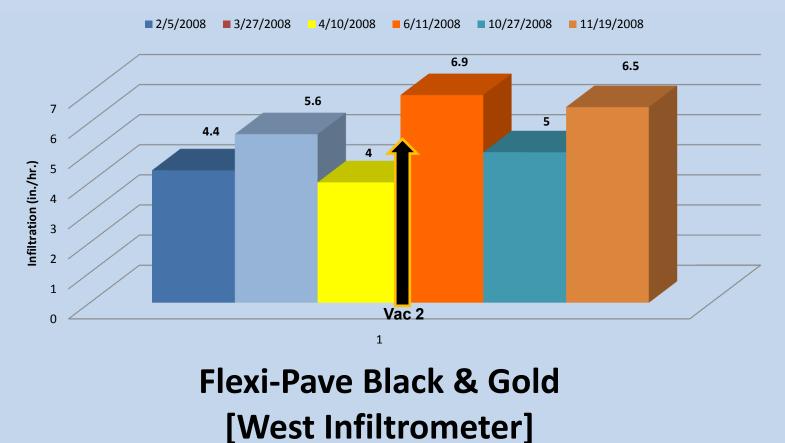
PERVIOUS CONCRETE REJUVENATION [north infiltrometer]

■ 1/31/2008 ■ 2/21/2008 ■ 3/13/2008 ■ 4/1/2008 ■ 6/2/2008 ■ 6/10/2008 ■ 6/20/2008 ■ 6/25/2008 ■ 8/13/2008 ■ 8/27/2008

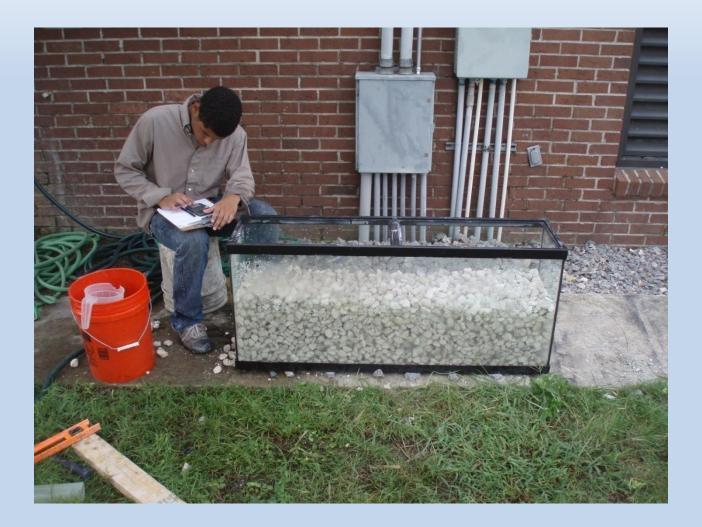


Pervious Concrete Rejuvenation North

Infiltration Test Results


PERVIOUS CONCRETE REJUVENATION [South infiltrometer]

■ 1/25/2008 ■ 2/21/2008 ■ 3/18/2008 ■ 4/1/2008 ■ 6/2/2008 ■ 6/12/2008 ■ 6/2/2008 ■ 6/2/2008 ■ 6/20/2008 ■ 8/13/2008 ■ 8/20/2008 ■ 8/27/2008


ERIK DATA

FPBGW

Bench Scale [#4 Limestone]

Pervious Concrete [Bench Scale]

Well pipe for drainage→ Sediment loading →

Laboratory Testing

	Pre-Load						
	EFFECTIVE POROSITY (pre-loading)						
			TEST SERIES AVERAGE				
S/NO.	MATERIAL	1	2	3	4	5	EFFECTIVE POROSITY
1	Pervious concrete	24.5	25.9	30.0	27.3	28.6	27.2
2	Flexi-pave	27.3	31.3	28.6	35.4	32.7	31.1
3	Porous asphalt	32.7	30.0	36.8	34.1	28.6	32.4
4	Permeable Pavers PP	10.0	8.1	8.8	9.5	-	9.1
5	Black & Gold	8.2	5.5	13.6		-	9.1
6	Pea rock (#89)	31.1	38.2	36.8	38.2	38.2	36.5
7	HPF	39.5	38.2	38.2	39.5	39.5	39.0
8	Crushed concrete (#57)	43.6	31.3	43.6	45.0	43.6	41.4
9	Limestone (#4)	45.9	47.7	45.0	46.3	41.0	45.2
10	Granite (#4)	40.9	43.6	45.0	43.6	45.0	43.6

Laboratory Testing

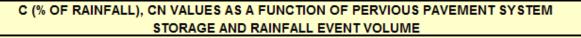
	Post Load						
	EFFECTIVE POROSITY (post loading)						
			TEST SERIES AVERAGE				AVERAGE
S/NO.	MATERIAL	1	2	3	4	5	EFFECTIVE POROSITY
1	Pervious concrete	21.8	21.8	28.6	24.5	20.4	23.4
2	Flexi-pave	6.8	20.4	17.7	1.4	5.5	10.4
3	Porous asphalt	16.4	15.0	27.3	23.2	16.4	19.6
4	Permeable Pavers PP						NA
5	Black & Gold						NA
6	Pea rock (#89)	12.3	10.9	21.8	9.5	8.2	12.5
7	HPF	13.6		16.4			15.0
8	Crushed concrete (#57)	1.4	1.4	1.4	1.4	1.4	1.4
9	Limestone (#4)	2.7	4.1	1.4	4.1	2.7	3.0
10	Granite (#4)	2.7	4.1	2.7	1.4	4.1	3.0

Recommended Effective Porosity

Туре	Sub-Type	Sustainable Void Space (%)
Pervious Concrete		20
Porous Asphalt		20
Flexi-pave [™]		20
Pervious Pavers	Old Castle	10
	Hanson	10
#4 Rock	Limestone	30
	Granite	30
#57 Recycled Crushed Concrete		25
#89 Pea Rock		25
Black and Gold Media		9

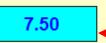
Storage Calculations with 16-in Sections

Calculator for Section Storage		
Layer	Depth (in)	storage (in)
Pervious ConcretePavement	6	1.2
#57 Rock	0	0
#89 Pea Rock	0	0
#57 Recycled Crushed Concrete	0	0
Black and Gold Media	10	0.9
#4 Rock	0	0
Storage	S'=	2.1
Curve Number	CN=	83
Runoff Coefficient	C=	0.66


* *This mention does not constitute an endorsement of product.*

Six (6) inches of pervious concrete * placed directly on top of the parent soil.

VIEW RUNOFF PERCENT AND CN


VALUE CURVES FOR THE

SPECIFIED RAINFALL AMOUNT

Note: Design Storm Rainfall amount should range between 4.0 and 15.0 inches.

Design Storm Rainfall Amount: (Hit "Enter" after input).

USER INSTRUCTIONS: INSERT THE DESIGN STORM RAINFALL AMOUNT FIRST, AND HIT "ENTER" AFTER INPUT (see above), THEN PRESS VIEW RUNOFF PERCENT AND CN VALUE BUTTON (see above right) TO SEE THE CHART WITH APPROPRIATE CURVES.

Notes: 1) An S value of 1.2 inches is equal to 6 inches of pervious pavement with a porosity of 0.2 and 12 inches would be a 6 inch pervious over 3 feet of sub base with a porosity of 0.30. Thus there are many perviou pavement situations that can be modeled within the range of S'. 2) Runoff coefficient on graphs is % of rainfall, thus divide by 100. Peak Runoff Qp = (C/100)iA where I (in/hr) and A (Acres) and the attenuation factor is 1 for parking areas and the 1.008 constant is not used.

After entering the rainfall depth, hit this button to view the plots and pervious pavement storage calculator.

> 24 hour, 25 year rainfall depth ≈ 7.5 inches.

S'	CN	C * 100	Ln (runoff 9	%)					
0.5	95	92.42	4.526	Blu	ue Numbers =	Input data			
0.8	93	88.25	4.480	Re	ed Numbers =	Answers			
1	91	85.61	4.450						
1.2	89	83.07	4.420	Predictive Eq	quations:				
1.5	87	79.45	4.375						
2	83	73.86	4.302	Rainfall Excess	s (in)	R = [P-0.2S']^2 / [P+0.	.8S'] If P>0.2S'	Blue Numbers	= Input data
2.5	80	68.77	4.231	Maximum Stora	age (in)	S' = [1000/CN] - 10 ar	nd CN = 1000/(S'+10)	Red Numbers	= Answers
3	77	64.12	4.161	Runoff Coeffici	ent	C = R/P			
3.5	74	59.86	4.092						
4	71	55.94	4.024	<u>Variables:</u>					
4.5	69	52.32	3.957						
5	67	48.99	3.892	Maximum Stora	age S' (inches) =	0.5 to 19 ir	nches		
5.5	65	45.89	3.826	Preciptation Ev	ent Volume P (ir	nches) = 4.0 to 15 ir	nches		Slide #51

* *This mention does not constitute an endorsement of product.*

For six (6) inches of pervious concrete * placed directly on top of the parent soil

1	Calculator for Pervious	Paveme	ent Section Sto	rage (S')	
2 3	Layer	Thickness (in)	SUSTAINABLE Void Space (%)	Storage (in)	
4	Click to select Perv. Pvmt. Section	v 0	0	0	
	to select Perv. Pvmt. Section	0	15	0	
	crete Pervious Pavement nalt Pervious Pavement	0	20	0	
Flexi	Pave®	0	20	0	
8	neable Pavers® #4 rock	0	20	0	
9	Recycled (crushed) concrete	0	20	0	

Blue Numbers	= Input data		
Red Numbers	= Answers		

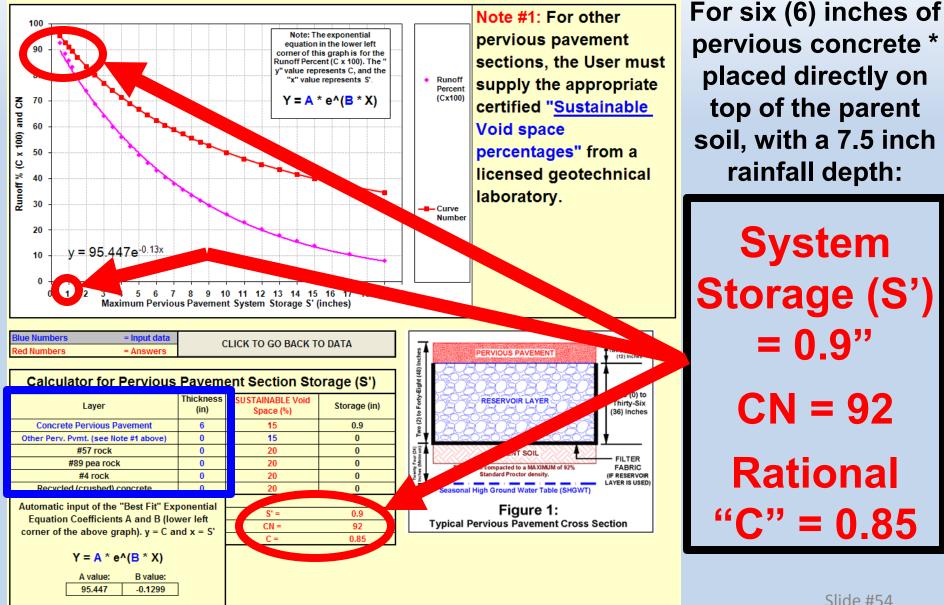
Pull down menu for the type of pervious pavement

* *This mention does not constitute an endorsement of product.*

For six (6) inches of pervious concreter placed directly on top of the parent soil

Calculator for Pervious Pavement Section Storage (S')

Layer		Thickness (in)	SUSTAINABLE Void Space (%)	Storage (in)
Concrete Pervious Pavement		6	15	0.9
Other Perv. Pvmt. (see Note #1 abov	e)	0	15	0
#57 rock		0	20	0
#89 pea rock		0	20	0
#4 rock		0	20	0
Recycled (crushed) concrete		0	20	0


Blue Numbers	= Input data		
Red Numbers	= Answers		

Note #1: For other pervious pavement sections, the User must supply the appropriate certified "<u>Sustainable</u> Void space percentages" from a licensed geotechnical laboratory.

If a storage reservoir is proposed, enter the appropriate thickness of the material(s)

* *This mention does not constitute an endorsement of product.*

Runoff Percent and Curve Number(CN) for the: 7.50 inch Design Storm Event

Water Quality Sampling

BACKGROUND SAMPLES

Slide #56

IMPERVIOUS RUNOFF SAMPLES

WATER QUALITY

TESTING:

- -Ph
- -Turbidity
- -Alkalinity
- -TP- Total Phosphorus
- -OP- Ortho Phosphorus
- NH4- Ammonium
- -NO3 + NO2- Nitrates plus Nitrites
- TN- Total Nitrogen
- TS & SS- SOLIDS

Heavy Vehicle Loading

Future Directions for Our Research at UCF

• Water quality studies

• Strength of pervious pavements

Pervious Pavement Systems

The Proposed Statewide Stormwater Rule: How We Got There

At a Meeting of the AMERICAN

OF ENVIRONMENTAL ENGINEERS® Proudly Serving the Environmental Engineering Profession since 1955

September 22, 2009 Discussion and Questions

a program from the

Presentation by Manoj Chopra, P.E., Ph.D. University of Central Florida

