Efficiency of Current Stormwater Rules The Proposed Statewide Stormwater Rule: How We Got There

At a Meeting of the

September 22, 2009

At the Science Applications International Corporation Facilities, Orlando Fl

a program from the

Presentation by Harvey Harper, Ph.D., P.E. President, Environmental Research & Design

9/22/2009

Work Efforts

- Evaluate performance efficiency of current stormwater water quality design criteria
- Update database for typical runoff characteristics
- If current design criteria fail to meet treatment goals, then develop design criteria to achieve treatment goal
 - 80% removal
 - 95% removal
 - Post
 pre-development loadings

Comparison of Typical Nitrogen Concentrations in Stormwater

Comparison of Typical Phosphorus Concentrations in Stormwater

Meteorological Monitoring Sites Used to Generate Rainfall Isopleths

 160 sites data obtained for 1971-2000

o ... with

Average Annual Florida Precipitation 1971 – 2000

Florida rainfall is highly variable ranging from ~ 38 – 66 in/yr, depending on location

Characteristics of Rainfall Events at Selected Meteorological Sites

 Rainfall is highly variable in the number of "small" and "large" events at sites around the state
 This impacts both runoff generation as well as treatment system performance efficiency

Annual C Values as a Function of DCIA and non-DCIA Curve Number

Similar Meteorological Zones

-Clusters represent areas with similar runoff generation potential - Analysis is dependent on rainfall distribution rather than annual rainfall

Runoff Characteristics

Literature survey conducted for common land use categories:

- Pre-Development
 - Agriculture (pasture, citrus, row crops)
 - Open Space / Forests
 - Mining

Post-Development
 Low-Density Residential
 Single-Family Residential
 Multi-Family Residential
 Low-Intensity Commercial
 High-Intensity Commercial
 Light Industrial
 Highway

Summary of Literature-Based Runoff Concentrations For Selected Land Use Categories in Florida

Land Use	Typical Runoff Concentration (mg/l)							
Category	ΤN	TP	BOD	TSS	Cu	Pb	Zn	
1. Low-Density Residential	1.61	0.191	4.7	23.0	0.008	0.002	0.031	
2. Single-Family Resid.	2.07	0.327	7.9	37.5	0.016	0.004	0.062	
3. Multi-Family Residential	2.32	0.520	11.3	77.8	0.009	0.006	0.086	
4. Low-Intensity Comm.	1.18	0.179	7.7	57.5	0.018	0.005	0.094	
5. High-Intensity Comm.	2.40	0.345	11.3	69.7	0.015		0.160	
6. Light Industrial	1.20	0.260	7.6	60.0	0.003	0.002	0.057	
7. Highway	1.64	0.220	5.2	37.3	0.032	0.011	0.126	
 Agricultural Agricultural Pasture Citrus Row Crops General Ag. 	3.47 2.24 2.65 2.79	0.616 0.183 0.593 0.431	5.1 2.55 3.8	94.3 15.5 19.8 43.2	0.003 0.022 0.013	 0.001 0.004 0.003	 0.012 0.030 0.021	
9. Undeveloped/Rangeland/ Forest	1.15	0.055	1.4	8.4				
10. Mining	1.18	0.15	7.6	60.0	0.003	0.002	0.057	

Dry Retention

On-Line Retention (0.50 Inch Retention)

Regional Variability in Treatment Efficiency of Dry Retention

Treatment of 0.5 inch Runoff vs. Treatment of 1 inch of Runoff (40% DCIA and non-DCIA CN of 70)

Design criteria based on treatment of 0.5 inch of runoff provide better annual mass removal than treatment of 1 inch of rainfall

Conclusion: Current dry retention designs fail to meet the 80% design standard

Retention Depth Required for 80% Removal

Melbourne

Dry Detention Basin

Systems only detain runoff for a short time
No permanent water pool, biological uptake minimal
Good TSS removal for larger particles
Poor nutrient removal

Wet Detention

Wet Detention Systems

Wet Detention Ponds Can Be Constructed as Amenities

Wet Detention Lakes Can Be Integral to the Overall Development Plan

Phosphorus Removal in Wet Ponds is Primarily a Function of Detention Time

Nitrogen Removal in Wet Ponds

Treatment Efficiencies for Typical Stormwater Management Systems

Type of System	Estimated Annual Removal Efficiencies (%)										
	Total N	Total P	TSS	BOD	Cu	Pb	Zn				
Dry Retention	Varies with region and treatment volume Generally 60-75% for existing design criteria										
Wet Detention	25	65	85	55	60	75	85				
Dry Detention	Highly variable – depends on pond bottom/GWT relationship										

Required Annual Mass Removal Efficiencies To Achieve Pre<=Post Loadings for Single Family Residential (25% impervious)

Required Annual Mass Removal Efficiencies To Achieve Pre<=Post Loadings for Commercial Development

Conclusions

 Current stormwater design criteria fail to meet the 80% treatment goal
 Additional treatment is required to eliminate or reduce pollutant loadings from new developments