HISTORY AND EVOLUTION OF FLORIDA'S STORMWATER PROGRAM The Proposed Statewide Stormwater Rule: How We Got There

At a Meeting of the

September 22, 2009

At the Science Applications International Corporation Facilities, Orlando Fl

Presentation by Eric H. Livingston Bureau Chief, FDEP, Tallahassee

THE STORMWATER PROBLEM

Humans cause:

- Changes in land use
- Development in floodplains
- Alteration of natural stormwater systems
- Compaction of soil, imperviousness
- "Drainage" systems
- Addition of pollutants
 - **Resulting in:**
 - Decreased recharge
 - Increased speed of runoff
 - Increased volume of runoff
 - Increased pollutant loads

STORMWATER IMPACTS FROM URBANIZATION

- Changes in ground water infiltration
- Changes in watershed hydrology
- Changes in stream hydrology
- Changes in stream morphology
- Changes in riparian zone habitat
- Changes in water quality
- Changes to aquatic habitat
- Changes in aquatic ecosystems

EVOLUTION OF STORMWATER MANAGEMENT IN FLORIDA

- Drainage
- Erosion and sediment control
- Stormwater treatment
- Stormwater retrofitting
- Watershed management

FLORIDA'S STORMWATER RULES

- **1979** Chapter 17- 4.248, F.A.C.
- **1982** Chapter 17- 25, F.A.C.

1994

- Chapter 62-25, F.A.C./ERP
- 2010? Chapter 62- 347, FAC DEP/WMD ERP rules

TECHNOLOGY BASED

- Performance Standard
- BMP Design Criteria
- Presumption of compliance
- Dynamic BMP designs

Performance Standard for New Stormwater Discharges (62-40, F.A.C.)

Erosion and sediment control

- Retain sediment on-site
- Not violate turbidity standard
- **Stormwater quality Original 1982**
 - 80% average annual load reduction
 - 95% average annual load reduction
 - "Of Total Suspended Solids"

Stormwater quality – 1990

- 80% average annual load reduction
- 95% average annual load reduction
- "Of pollutants that cause or contribute"

WHY 80% TSS LOAD REDUCTION?

- Equitability with point sources
 - Min treatment = secondary = 80% TSS
- Cost effectiveness
 - 80% = "knee of the treatment curve"

EXAMPLE PROJECT

	PRE DEVELOP	POST DEVELOP	POST WITH BMPs
LAND	90 ac forest	95 ac SF	95 ac SF
USE	10 ac wetlands	5 ac SWM	5 ac SWM
% IMP		25%	25%
RUNOFF	82 ac ft/yr	123 ac ft/yr	123 ac ft/yr
TN LOAD	109 kg/yr	330 kg/yr	231 kg/yr
TP LOAD	5 kg/yr	51 kg/yr	18 kg/yr

Assume BMPs are wet detention

HIGHER LEVELS OF STORMWATER TREATMENT – WHY?

Opyright Bill Yates / CYPIX 2005
Nutrient impaired surface waters (TMDLs)
Elevated nitrates in springs
Harmful algal blooms

Microcystis Bloom - I-295 (north view) over mid-channel St. Johns River - 08.19.05 - 2:43pm copyright Bill Yates / CYPIX 2005 all rights reserved

STATEWIDE STORMWATER RULE OBJECTIVES

- Increased nutrient removal
- Statewide consistency
- Permit streamlining
- Promote "smart growth"
- Increase "BMP tools" available

STATEWIDE STORMWATER TREATMENT RULE REVISED SCHEDULE

- Issues to DEP Secretary/WMD EDs (Oct 07)
- Formation of TAC (Jan-Feb 2008)
- TAC meetings (March Nov 2008)
- Project scenario analysis (Jan Feb 09)
- Final performance standard (March 09)
- Revised Applicant's Handbook (Mar June)
- TAC meetings (July September 09)
- Rule workshops (Jan May 10)
- Authorizing legislation (May 2010)
- Rule adoption by Secretary (May 2010)
- Rule effective (July 1, 2010)

STATEWIDE STORMWATER TREATMENT RULE

PERFORMANCE STANDARD CLASS 3

- 85% nutrient reduction, or
- Post < pre, where pre is the loading from natural vegetation communities
- Whichever is less
- **PERFORMANCE STANDARD OFWs**
 - Post < pre

PERFORMANCE STANDARD IMPAIRED

Net environmental improvement

PROPOSED METHODOLOGY

- Continuous simulation modeling charts
- Site specific assessment required
- Assumed predevelopment conditions
 - HSG, natural land EMCs
- Calculate pre-development nutrient loads
- Calculate post-development nutrient loads
- Calculate required load reduction: 85% or post=pre
- Develop BMP Treatment Train to achieve required load reductions

UNIFIED STORMWATER RULE CONCEPTS

- One storm does not fit all 5 rainfall zones
- BMP treatment train required
- Debits/Credits for nonstructural BMPs
 - Higher CN for cleared areas (compaction)
 - Preserving vegetation, minimize clearing
 - Disconnect impervious areas
 - Green roofs
 - Pervious concrete
 - Florida Friendly Landscaping
- Compensating treatment (WQ Banking)
- Retrofit section

BMP TREATMENT TRAIN REQUIRED FOR WET DETENTION RECOMMENDED FOR ALL SITES

Runoff &	Convoyanco	Additional	Final
		Treetment 8	Treatment
Load			and
Generation	Pretreatment	Attenuation	Attenuation

Source controls Public ed Erosion control Roof runoff Florida Yards LID **Illicit connections Biodetention**

Swales Filter strips Landscaping **Catch basins Filter inlets Baffle boxes**

Sediment basins Retention **Detention**

MAPS Alum/PAM Reuse Regional ponds

UNIFIED STORMWATER RULE CONCEPTS

- One storm does not fit all 5 rainfall zones
- BMP treatment train required
- Debits/Credits for nonstructural BMPs
 - Higher CN for cleared areas (compaction)
 - Preserving vegetation, minimize clearing
 - Disconnect impervious areas
 - Green roofs
 - Pervious concrete
 - Florida Friendly Landscaping
- Compensating treatment (WQ Banking)
- Retrofit section

COMPENSATING TREATMENT

- Currently used for FDOT bridges
- How implemented?
 - Calculate load not treated
 - Provide treatment close to project
 - Buy into retrofit project
- Future use for small, commercial projects

UNIFIED STORMWATER RULE CONCEPTS

- One storm does not fit all 5 rainfall zones
- BMP treatment train required
- Debits/Credits for nonstructural BMPs
 - Higher CN for cleared areas (compaction)
 - Preserving vegetation, minimize clearing
 - Disconnect impervious areas
 - Green roofs
 - Pervious concrete
 - Florida Friendly Landscaping
- Compensating treatment (WQ Banking)
- Retrofit section

STORMWATER RETROFITTING IN FLORIDA

Greenwood Wetland

During servicing, the screen system bottom hinges open to give easy access to the sediment collected in the lower chambers.

Baffle Boxes

Packed bed wetland

LOCAL LID LEGAL IMPEDIMENTS

- LDRs promote conventional development
- LDRs prohibit or inhibit Low Impact Design
- Code/Cultural changes needed
- Save the Swales
- Pervious pavements
- Reduce imperviousness
- Florida Friendly

- Landsaping-design, irrigation, fertilizer
- Reduce clearing of vegetation, protect native vegetation, minimize soil compaction

PROGRESSIVE STATE/LOCAL LID EFFORTS

October 2005

PROPOSED STORMWATER LEGISLATION

- Grandfathering provisions
- Authorizes "rebuttable presumption" approach
- Authorizes alternative performance standards for urban redevelopment projects and retrofitting projects
- Single rule adoption by DEP with implementation by DEP and WMDs
- Harris Act exemption

WHY A NEW STORMWATER RULE?

- Too Many Dirty Lakes!
- Too much nitrate in ground water/springs
- Integrate nonstructural BMPs
- Level the playing field
- Simply time to evolve BMPs dynamic

nour number 1 status

