

BUILDING A WORLD OF DIFFERENCE®

Trends in Wastewater Treatment E30: AAEE/AIDIS/WEF Breakfast

WEFTEC 09

Orlando, Florida October 10–14, 2009

James L Barnard

Contents

- Discovery of the Activated Sludge Process
- Major trends in wastewater treatment
- Drivers for Research and Development
- Wastewater as a Resource
- Possible Future Scenarios

1914 - Arden & Lockett Publish Activated Sludge Process

The Activated Sludge Process

Physical/Chemical Treatment

Tertiary High Lime and Ammonia Stripping

 Lake Tahoe – Right and Pretoria Left

Ion Exchange for ammonia removal

Trends in Independent Physical/Chemical

Goudkoppies plant completed - 1975

60th Birthday of the activated sludge process

85% N removal 90% P Removal

Anaerobic Zones added 1974

Dublin Bay – View towards City

Nitrogen Removal in Attached Growth systems

Davyhulme plant, Manchester – Biological Aerated Filters

Nitrification

The Activated Sludge Process #2

IFAS Example Schematic

Biological phosphorus removal still possible

Application of Membranes to Wastewater - 1968

October 10-14, 2009

Drivers for Development of New Technology

- Population Growth
- Eutrophication Reduce N and P to lowest possible level
- Reduce energy cost and recovery of energy
- Reduce EDC and PCP
- Reduce GHG
- Recovery of resources

Urbanization in the world

Within 2035 60 % of the global population will live in cities

World Watch Institute 2007: > 50 % is already living in urban areas WEFTEC ⁰⁹ Orlando, Florida October 10-14, 2009

-

Johannesburg North Receiving Water

Image © 2008 DigitalGlobe

Pointer 25°45'06.93" S 27°50'03.87" E elev 3825 ft Streaming ||||||||| 100%

*2007 Google" Eye alt 7073 1

Image © 2008 DigitalGlobe

Pointer 25°42'20.13" S 27°51'12.67" E elev 3961 ft Streaming ||||||||| 100%

Town of Brits

Eye alt 43814 ft

Drive for Limits of Technology (LOT)

- LOT is meaningless and should not be used
- What is Sustainable
- What is economically justifiable
- LCA studies
- Nitrogen limits 2.5 mg/L? What is the role of the rDON? How is it removed?
- Phosphorus limits down to 0.01 mg/L.
- Should we apply strict nutrient limits when the impact is negligent or it is evident that it may harm the receiving water

In inland freshwater, it was proven that phosphorus leads to algal growth

Jezioro ELA 227 (Freshwater Institute, Winnipeg). Przegroda oddziela sekcje z dodatkiem P

B&V - 26

WEFTEC 09 Orlando, Florida

October 10-14, 2009

Upper Occoquan Plant

Occoquan Reservoir, Virginia

Unaddressed **Violations** Damage Waterways and Send the Wrong Message to Citizens, **Developers** and Neighboring **Localities**

Up to 85% of the flow to the reservoir comes from Water Purification plants

In 1989, 60% all streams in the Occoquan Watershed were classified as high-quality streams

WEFTEC 09 Orlando, Florida

October 10-14, 2009

Global Cooling or Global Warming

2009

1968

Comparative Energy Costs

Energy used for	kWh/c/a
BNR Wastewater Treatment	40
Switching one lamp to low energy fixtures	102
Pumping water from north to south of California	355
Household per person (2 persons)	14,000

Most of the Energy in WWTP required for Nitrification

FAD or FUTURE?

An expert evaluates whether digester-gas-fed fuel cells and microturbines are cost-effective sources of power

Nicholas Mignone WE&T November 2008

Green-House Gases

GHG Emissions from three plants –

Dr Katie Third – W2W Alliance Perth)

Sources of green house gases

- 85 95% from water vapor
- 13% of remaining GHG caused by nitrous oxide (by effect)
- 12% of N₂O from anthropogenic sources
- 65% of that from domesticated animals
- 20% from industry including vehicles
- That leaves 15% for others including agriculture which would put wastewater treatment plants at most (guess) 0.1% of the remaining 15%. (from Foley et al 2008)
- The net effect of reducing N₂O at all WWTP may be a reduction of 0.000006% of GHG

Endocrine Disruptors Personal Care Products

Treatment of Emerging Contaminants Biological Treatment

Preliminary Comparison of six Arizona WWTPs

Overall estrogenic activity removal (%)

Membrane bioreactor

97

Nitrification/denitrification

99

Slude

Effluent

WEFTEC ⁰⁹ Orlando. Florida

Possible Resource Recovery

Phosphorus Removal and Recovery

WEFTEC 09 Orlando, Florida

October 10-14, 2009

THE DISAPPEARING NUTRIENT

Phosphate-based fertilizers have helped spur agricultural gains in the past century, but the world may soon run out of them. **Natasha Gilbert** investigates the potential phosphate crisis.

Renewed Interest in Biological Phosphorus Removal

- Cost of chemicals.
- Sludge production: S-T estimates saving of £4 million p.a.
- Better understanding of the mechanism
- Better overall economics in getting to really low levels
- Phosphorus recovery while still applying chemicals for polishing

Global Reserves of Phosphorus

Brazil USA Other Countries □ South Africa Russia ■ Morocco Jordan 🗆 Israel China

Phosphorus recovery

Maier Re-USC

WEFTEC 09 Orlando, Florida

October 10-14, 2009

Water reclamation for Potable use

B&V - 47

WEFTEC 09 Orlando, Florida

October 10-14, 2009

Windhoek Water Reclamation

Singapore - New Water

October 10-14, 2009

Will the activated sludge plant be around for another 30 years? 50 years? 100 years?

Very Likely

- As MBR for low footprint
- With Membrane Filtration Nanotechnology
- With maximum power recovery
- High removal rate of ammonia
- Relatively low GHG
- High removal rate of PCP&EDC
- Opportunity to recover phosphorus

Or in other forms - Anammox

Granular Activated sludge - Gansbaai RSA

COD in 800-10,000 ppm \rightarrow COD out < 100 ppm / N in 150-200 ppm \rightarrow N out < 10ppm P(dissolved) in 15-25 ppm \rightarrow P out < 1.0 ppm / SS out < 20 ppm

NEREDA[®]

WEFTEC 09 Orlando, Florida

October 10-14, 2009

Urine in Wastewater

Volume of Wastewater

"N" Content

"P" Content

Yellow-water (Urine+flushwater) Brownwater (Faeces+flushwater) Greywater (shower, kitchen, etc)

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Summary

- Expect to see the activated sludge process around for some time in some form – as, IFAS, MBR or with membrane filtration for water re-use
- More emphasis on resource recovery N and P
- More emphasis on saving water as the main driver for reducing energy cost – indigenous living
- Urine separation as a means of sustainability in countries that are catching up and in new developments
- Greatly improved membranes for solids liquid separation and water recovery

If you are still awake Thank you for coming

