Thank you to our Patrons

Leadership and Excellence in Environmental Engineering and Science

Thank you for attending our webinar today.

Would you like to attend our next webinar?

Join us Wednesday, May 18th for the webinar titled "Reinventing the Toilet for Global Sanitation: The NEWgenerator Resource Recovery Machine"

We have several other webinars scheduled as well. Go to AAEES.org/Events to reserve your spot.

Would you like to watch this webinar again?

A recording of today's event will be available on AAEES.org tomorrow.

Not an AAEES member yet?

To determine which type of AAEES membership is the best fit for you, please go to AAEES.org or email Marisa Waterman at <u>mwaterman@aaees.org</u>.

Need a PDH Certificate?

You will be emailed a PDH Certificate for attending this webinar within two weeks.

Questions?

Email Marisa Waterman at <u>mwaterman@aaees.org</u> with any questions you may have.

Leadership and Excellence in Environmental Engineering and Science

Innovative, Sustainable, Integrated Resource Recovery

Sandeep Sathyamoorthy Global Practice & Technology Leader Black & Veatch

Process Intensification: Doing More with Less

Intensified Nutrient Management Technologies

Integration of sidestream and mainstream deammonification

Black &

Veatch

An MABR is...

"Breathing" Biofilms

R/

Passive delivery of oxygen results in high oxygen transfer efficiencies.

Black & Veatch Work Product ©All Rights Reserved

The MABR supports counter-diffusional substrate delivery.

Counter-diffusional substrate delivery supports total nitrogen removal in a single biofilm and basin.

Benefits of an MABR

a Bubbleless Aeration Device

• Fine aeration control

a Biofilm Technology

- Intensified treatment
- Support slow growing organisms

SYNERGY

- Efficient aeration driven by biofilm activity
- High abundance of nitrifying organisms in biofilm
- Total nitrogen removal in a single reactor

Value Proposition of MABR Technology

- Support total nitrogen removal in the same tank
- Retrofit existing aeration tanks and achieve process intensification
- Achieve efficient oxygen transfer rates
- Reduce internal recycle pumping
- Reduce supplemental biodegradable organic carbon requirements for denitrification

MABR achieves nitrification/denitrification in the anoxic zone.

MABR achieves nitrification/denitrification in the anoxic zone.

Technology Providers

OUPONT

Knowledge Gaps of MABR

Fundamental Understanding

- Microbial Community Structure
- AOB/NOB ratio

Operational Challenges

- Optimal SRT
- Impact of C:N ratio
- Biofilm Management

Scale up Challenges

- No of cassettes
- Nitrification Rate

Nutrient Removal Intensification **Using MABRs: Pilot Study at Hayward WPCF**

INNOVATION PLATFORM

A collaborative research program transforming waste into resources to support a circular economy.

Black & Veatch:

Suez:

Hayward:

Sandeep Sathyamoorthy Yueyun Tse Kelly Gordon Dwight Houweling Dan Coutts David Donovon Farid Ramezanzadeh

MABR Pilot @ Hayward WPCF

Black & Veatch Work Product ©All Rights Reserved

Use the research to fill knowledge gaps related to three main question

MABR Pilot Research Question #1

Evaluate the *aerobic solids retention time (SRT)* required to achieve *nitrification* in an *MABR* configuration compared with a *Suspended Growth BNR* configuration

1. Lower nitrification "work" required by suspended sludge

2. "Seeding" effect by the biofilm.

Black & Veatch Work Product ©All Rights Reserved

Pilot (MABR+ Sus. Growth) Performance At Different SRTs

Each SRT Condition tested for > 5X SRT

COD

Flow-weighted average from duplicate 24-h intensive sampling (2h interval) results

Pilot (MABR+ Sus. Growth) Performance At Different SRTs

Looking at the Nitrifying Fraction of the overall biomass

Calculated using qPCR & assumptions related to gene copies in specific phyla qPCR data from Chandran lab (Columbia University)

22

Black & Veatch Work Product ©All Rights Reserved

MABR Pilot Research Question #2

How does **Suspended Growth AE SRT** impact **Nitrification Rate** (g-N/d/m²) of MABR Biofilm?

- Key Design Parameter
- Longer Suspended Growth AE SRT should lead to lower
 NHx-N Concentration in MABR Zone

MABR Zone NHx-N Conc., mg/L

MABR Ammonia Removal/Nitrification Rate

3d SRT v.s. 0.3d SRT

 Nitrification Rate increased from ~3 to ~4 g-N/m²/d as suspended growth AE SRT decreased from 3 to 0.3d.

3d SRT v.s. 1.5d SRT

lower rate at higher NHx-N
conc.?

Low Nitrification Rate @ High Ammonia Conc.?

- Similar OTR but different nitrification rate
- lower rates are a result of oxygen used for other activities (e.g. BOD oxidation)

Lower Nitrification Rate @ Higher Ammonia Conc.?

Hypothesis 1:

• SRT influence O2 availability for nitrification

SRT Decrease-> Less NOx Return & Increased COD Conc.

Low Nitrification Rate @ High Ammonia Conc.?

Hypothesis 2:

 lower rates are a result of changes in the biofilm microbial ecology over time and the order of the experiments

MABR Pilot Research Question # 3

Assess the impact of the **organic carbon to nitrogen loading rates** (C/N) on MABR performance.

- Biofilm **Function**--C:N ratio affects competition between heterotrophs and nitrifying organisms for **oxygen**.
- Biofilm Structure-- C:N ratio affects competition between heterotrophs and nitrifying organisms for space in the biofilm
- Biofilm **Thickness**--Excessive carbon loads can result in thick biofilms and diffusional limitation.

Different C/N Ratio->Different *Structures* of Biofilm

Typical	Primary Effluent
sCOD/NHx-N	7
NHx-N, mg/L	41
tCOD, mg/L	545
sCOD, mg/L	302

"high-C/N biofilm"

Typical	TF Effluent
sCOD/NHx-N	2.5
NHx-N, mg/L	34
tCOD, mg/L	280
sCOD, mg/L	85

"low-C/N biofilm"

₽**∕**

Different C/N Ratio->Different Structures of Biofilm

Typical	Primary Effluent
sCOD/NHx-N	7
NHx-N, mg/L	41
tCOD, mg/L	545
sCOD, mg/L	302

Typical	TF Effluent
sCOD/NHx-N	2.5
NHx-N, mg/L	34
tCOD, mg/L	280
sCOD, mg/L	85

"low-C/N biofilm"

R

Different Biofilm *Structures->* **Different Ammonia Removal Rates**

All Tested at 3d aerobic S.SRT

Ę,

Biofilm Built in PE

Biofilm Built in TFE

- PE as Pilot Influent
- ▲ TFE as Pilot Influent

What happens when COD loading is too high

HIGHER LOADING CONDITIONS (sCOD Loading ~60 g/m².d)

LOWER LOADING CONDITIONS (sCOD Loading ~20 g/m².d)

R.

₽∕

Pilot Performance Under Different Flow Rate (~3 day SRT)

Biofilm Management is Critical

distance from attachment surface

₽∕

Biofilm Management is Critical for Oxygen Transfer

- Scouring Intensity/Rate
- Scouring Frequency/Interval

R,

Scouring Duration

Takeaways from MABR Research

- The counter-diffusional substrate delivery scheme leads to TN removal in one Tank.
- TN removal can be achieved at suspended **SRTs** lower than conventionally required/designed through MABR intensification
- Biofilm Management, C/N Ratio, Balance between Biofilm and Suspended Growth are critical to maintain high nitrification rate and efficient MABR performance

Key Factors to Consider for MABR Design

Consider expansion of an existing WRRF at an adjacent site

R,

Consider expansion of an existing WRRF at an adjacent site

New WRRF Design (at "greenfield" site)

R/

New WRRF Design (at "greenfield" site) Process Design Summary

Can Process Intensification Help Enhance the Process Design?

• What is the potential suspended SRT (and resulting volume) reduction?

• What are some trade-offs to consider?

Incorporation of MABRs into the MLE design

Current CAS Design

- ~ 11 MG
- ~35% AX, 65% AE
- MLSS_{MAX.MONTH} ~ 2,500 mg/L

• MABR-AS Design

- ~ 8 MG
- ~ 50% AX
- MLSS_{MAX.MONTH} ~ 2,500 mg/L

Aeration & Chemical Use Benefits

Tradeoffs

- Replacing potentially expensive concrete with equipment
 - More detailed tradeoff analyses required including LCA, etc.
- But there are benefits to reducing overall tank depth
 - Safety, operability, etc.

- Can this not be planned for as part of a future "plug-and-play" solution?
 - Yes...& No
 - Overall plant design/integration and system design are critical
 - (any) technology needs to be "best positioned" for success
 - For MABRs hydraulics are key: shortcuiting, bypassing, best use of membrane area, etc.

BUILDING A WORLD OF DIFFERENCE

Sandeep Sathyamoorthy Global Practice & Technology Leader

+1.925.949.5913 SathyamoorthyS@bv.com

BUILDING A WORLD OF DIFFERENCE*

Sandeep Sathyamoorthy Global Practice and Technology Leader at Black & Veatch

