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The grand challenge of monitoring
and predicting terrestrial water

How terrestrial water system will be
impacted by climate change?



SOIL MOISTURE

Controls the exchanges of water, energy,
and carbon fluxes at the land surface




Many processes behave non-linearly
with soil moisture at the local-scales

Evapotranspiration and crop productivity

Evapotranspiration =
transpiration + evaporation
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How can we measure and
predict soil moisture?




/*\ In-situ Soil Moisture Observations

Characteristics:

= Gravimetric measurements:

= Laborious to collect, dry, and weight the sample

®» |ndirect sensor measurements:

=  Flectrical resistance, dielectric constant, or interaction
with neutrons

= Require individual calibration

—> Local representativeness (0.1-500 meters)

—> Costly and not widely available




Characteristics:

" Satellite Observations:
7 NASA Soil Moisture Active-Passive Mission (SMAP)

SMAP Soil Moisture 8-day Composite (May 28th — June 4™, 20I9)

201 5—current

2—-3 days revisit time
36-km resolution |
Measures brightness temperature
Retrieves soil moisture via Radiative Transfer Model (RTM)
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?lfl Earth System Models (ESMs)
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Our best representation of the complex Earth system
through physical equations
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ATMOSPHERE

Global water cycle Modes of variability [ [
e Characteristics:
Ocean currents and eddies
P =  Numerical model
Mixed layer processes
M o i " Integrated Earth system
Sea ice
Mt hannets and " Provides process understanding
— = Physically resolve soil-water
Lake and river ice
= State-of-the-art: |0-km res.
CRYOSPHERE . .
= Computationally expensive
Land Surface MOdeI Source: DOE, Paul Ullrich (UC Davis)




The challenge:
Soil moisture is highly variable in space and time

Soil Moisture
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Unresolved spatial scale mismatch between

observations, models, and processes



To address terrestrial water Modeling
grand challenges... scales

=

Processes
scales

Observation
scales

Earth system
impacts
(local to global scales)

There is a need for integrated approaches that
reconcile the scale of observations, models, and processes to
stakeholder-relevant spatial scales



Landsat & Sentinel
10-30m Derived databases

- Soil Properties:
30m POLARIS
250m SoilGrids
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How can we leverage these unique opportunities to
understand and predict soil moisture dynamics locally?



Objective: Demonstrate how big environmental data, machine

learning, and HPC enables locally-relevant hydrologic information

Outline:

. HydroBlocks —Advancing realism in Earth
system models through Big environmental data

2. SMAP-HydroBlocks — Unlocking the
potential of satellite Earth observation via land
data assimilation

3. Spatial scaling of soil moisture — Investigate
the impact of local-scale hydrology for Earth
system predictability
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== Similarity
1 s -
Machine = (\\\
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?E" Land Surface Models

Our best representation of the complex land surface system
through physical and statistical equations

A Surface energy fluxes B Hydrology ¢ Carbon Cycle
i Precipitation
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Earth System Models
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?lf. Soil Moisture Dynamics

Physically modeling soil water dynamics in
different soil layers via Richards Equation

00 9 3(z + 1)
E_E(KZ(H) 0z )+S

6 soil moisture

t time

z elevation

K, hydraulic conductivity
1 soil water potential

S sources/sink

Earth System Models




?lj Fully Distributed vs. Lumped Models
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Locations with similar landscape and climate
characteristics yield similar hydrologic response

Hydrologic Similarity

-
[

Machine Learning
Clustering Scheme

30-m Big Geospatial
Environmental Data

Partition the domain into | 00-500 HRUs
instead of Imillion grid cells

Cluster = Hydrologic Response Unit (HRU)

Vergopolan et al. (202 ). SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US. Nature Scientific Data.
Chaney, et al. (202 1). HydroBlocks v0.2: enabling a field-scale two-way coupling between the land surface and river networks in Earth system models. Geoscientific Model Development.
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% HydroBlocks Land Surface Model HgdrOBk)C |<S

Physically resolve land surface processes in

the HRU-space instead of grid-space

* HRUs define the computational mesh
= Core physics of Noah-MP land model
= Effective 30-m spatial resolution

= Computationally efficient

= Storage efficient

" Scalable from local to global scales




% HydroBlocks CONUS Simulation

Environmental Data HUdnglOCkS Soil Moisture Simulations

*

@
vo

=  Continental United States ~7.7 million km?

" ~5 million HRUs (instead of ~8 billion 30-m grid cells) <
~800 km

=  3-h temporal res., 30-m (effective) spatial res.
= 2010 to 2019 (2010 to 2014 spin up)
=  Run on HPC system using 300 cores (~| week)

R
* Output variable/year: 200 GB (HRU-space) or ~312 TB (grid-space) 005 010 015 0:20 025 0:35 035 0.40 048
10 July, 2016




Hyper-resolution land surface modeling of
surface soil moisture

Volumetric soil moisture (m3/m3)

0.0 0.25 0.5 Noemi Vergopolan @ Princeton University | O 1 : 0 1 i 20 1 7
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We have the model capabilities...

How can we take advantage
of satellite and in-situ
observations?

Data Assimilation

S

A

HydroBlocks
Land Model
30 m
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\\""\

Satellite

Observations
36 km

A

In-situ
Observations
point scale
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SMAP-HydroBlocks:

Combining land surface modeling, satellite remote sensing, and in-situ observations

In-situ Observations &
HydroBlocks LSM Machine Learning

30-m soil moisture ‘
30-m surface temp. .
30-m soil properties Cluster-based Spatial

Bayesian Merging

~ Xiiry
Forward Backward
Tau-Omega -»> - Tau-Omega
RTM 30-m brightness temp. RTM SM.AP-H,B
P 30-m Soil Moisture
BL\P L3 Enhanced ;’r’ undedaiilt  Modeling and merging satellite
Ancillary Data Radiative Obse & &g

9-km veg. optical depth ‘ : IEUERONl observations at the HRU-SP&CG
9-km roughness length brightness tem . .
9-km albedo reduces the dimension
of the system by 300-500 times

Vergopolan et al. (2020). Combining hyper-resolution land surface modeling with SMAP brightness
temperatures to obtain 30-m soil moisture estimates. Remote Sensing of Environment. 24




SMAP-HydroBlocks:

The first 30-m resolution satellite-based surface soil moisture dataset for the US

1. Sierra Nevada

5. Lower Mississippi River 6. Okefenokee Wildlife Refuge 7. Appalachian Mountains
. ) P i = =2 T T
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Insets locations: =
1. Sierra Nevada (CA)
2. Castaic Lake (CA)
3. Bull Shoals Lake - Ozark Plateau (AK)
4. Upper Mississippi River (WI)
5. Lower Mississippi River - Mississippi Floodplain (MS)
6. Okefenokee National Wildlife Refuge (GA) [ |
7. Appalachian Mountains (WV) 0.0 01 0.2 03 04mm’

Vergopolan et al. (202 1). SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US. Nature Scientific Data. 25



Data characteristics:

= 2015-2019

= 30-m effective spatial resolution
= 2-3 days revisit time (SMAP)

= |22 TB of data

Ongoing applications:
" Drought conditions and impacts
= Crop water demands
= Antecedent conditions for:
flooding, wildfires, landslides
= Distribution of species & ecosystems

Future research:

% Global coverage & current date

% Deep learning for assimilation

% Local-scale irrigation and wildfires
(thermal/infrared + SAR sensors)
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SMAP-HydroBlocks:

Largely improves soil moisture spatial representativeness
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Spatial correlation:

Correlation calculated between in-situ observation and soil moisture
products at each time step when at least 60 in-situ observations are
simultaneously available
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SMAP L3: 9-km resolution (observation input)

SMAP L4: 9-km resolution (NASA’s state-of-the-art)
HydroBlocks: 30-m resolution (model input)
SMAP-HydroBlocks: 30-m resolution (best performance)

Vergopolan et al. (2021): SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US. Scientific Data 27



Temporal Evaluation:

SMAP-HydroBlocks show improvements over baseline products
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SMAP-HydroBlocks enable us to
understand for the first time...

What is the soil
moisture variability
at local-scale?

How this spatial
variability persists
across scales?

Vergopolan et al. (2022). High-resolution soil moisture data reveal complex multi-
scale spatial variability across the United States. Geophysical Research Letters
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What is and what drives the soil moisture spatial variability?

a. Spatial variability of soil moisture (c30m)

Low spatial " '.',- High spatial
variability variability
| o—— — |

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Soil moisture spatial standard deviation (m3/m?3)

Spatial standard deviation (std) calculated at each 10-km grid
cell using the 30-m SMAP-HB climatological soil moisture

Vergopolan et al. (2022). High-resolution soil moisture data reveal complex multi-scale spatial variability across the United States. Geophysical Research Letters

b. Physical drivers of the spatial variability
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How this variability persists across scales?

Spatial Scaling Analysis

Spatial standard deviation of soil moisture (o)

Spatial standard deviation ratio (Oscae/030m)
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What is the soil moisture information loss across the US?

Information Loss of 1-km Resolution Data (%)

* Up to 80% of spatial variability loss

(i.e., variability does not persist across scales)

" |larger losses at topographic
gradients

* Tremendous loss at the scale of
current modeling and observation
capabilities (e.g., | to 25-km resolution)

What are the implications

of this information loss?

‘@' Vergopolan et al. (2022). High-resolution soil moisture data reveal complex multi-scale
%o&"’"wsm oF 0"&

% spatial variability across the United States. Geophysical Research Letters

32



Many processes behave non-linearly
with soil moisture at the local-scales

Evapotranspiration and crop productivity

Evapotranspiration =
transpiration + evaporation
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Budyko Curve
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Towards locally-relevant Noemi Vergopolan

global hydrologic monitoring P
noemi@princeton.edu
for water resources and @NVergopolan (Twitter)

climate applications
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Would you like to attend our next webinar? Join us Wednesday, Sept. 215t for a webinar with Stanley Consultants titled
“Converting Organic Waste into Liquid Gold”

We have several other webinars scheduled as well. Go to https://www.aaees.org/events to reserve your spot.

Would you like to watch this webinar again? A recording of today’s event will be available on AAEES.org tomorrow.

Not an AAEES member yet? To determine which type of AAEES membership is the best fit for you, please go to
AAEES.org or email Marisa Waterman at mwaterman@aaees.org.

Need a PDH Certificate? You will be emailed a PDH Certificate for attending this webinar within two weeks.

Questions? Email Marisa Waterman at mwaterman@aaees.org with any questions you may have.
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