Thank you to our Patrons
Locally Enhanced Electric Field Treatment (LEEFT) for Disinfection

Xing Xie

October 5, 2022
Acknowledgements

- **PhD/MS Students**
 - Ting Wang
 - Cecilia Yu
 - Mourin Jarin
 - Feifei Liu
 - Feiyang Mo

- **Alumni**
 - Zeou Dou, PhD
 - Wensi Chen, PhD
 - Jianfeng Zhou, PhD
 - Betty Sui, MS
 - Nissim Gore-Datar, MS
 - Shui Jing, MS
 - etc.

- **Visiting scholars**
- **Collaborators**
- **Lab/Administration Support**
Bacteria Inactivation

- Seeking for efficient bacteria inactivation methods is important.

<table>
<thead>
<tr>
<th>Public health</th>
<th>Food safety</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water disinfection</td>
<td>Food sterilization</td>
<td>Biofouling control</td>
</tr>
<tr>
<td>Chlorination</td>
<td>Heat treatment</td>
<td>Biocidal coating</td>
</tr>
<tr>
<td>Disinfection-by-products</td>
<td>Nutrition and flavor loss</td>
<td>Environmental hazards</td>
</tr>
</tbody>
</table>
Locally Enhanced Electric Field Treatment (LEEFT)

- Environmental Science Technology, 2016, 50: 7641-7649
- Environmental Science: Water Research & Technology, 2018, 4, 872-881
- Scientific Reports, 2018, 8, 15832
- Journal of Materials Chemistry A, 2018, 6, 18813-18820
- Advanced Energy Materials, 2019, 1901320
- Chemical Engineering Journal, 2019, 369, 1005-1013
- Journal of Materials Chemistry A, 2019, 7, 7347-7354
- Environment International, 2019, 128: 30-36
- Environment International, 2019, 132: 105040
- Environmental Science: Nano, 2020, 7: 397-403
- Environmental Science: Nano, 2020, 7: 2021-2031
- Environmental Science Technology, 2020, 54: 14017-14025
- Frontier of Environmental Science & Engineering, 2020, 14: 78
- Journal of Materials Chemistry A, 2020, 8, 12262-12277
- Water Research, 2021, 207: 117817
- Nano Letters, 2022, 2: 860-867
Electric Field Treatment (EFT)

ΔV: several kV

E_{ext}

Pore in membrane
Locally Enhanced Electric Field Treatment (LEEFT)

Macro-scale enhancement

Micro-scale enhancement

- Combine Macro- & Micro-scale enhancement
- **Tubular coaxial-electrode** configuration
 - Two levels of electric field enhancement

Electrode fabrication

– PDA-CuONW-Cu

Tubular Coaxial-electrode LEEFT

- Electrode morphology

- Water disinfection performance \((E. \ coli)\)
 - 99.9999\% inactivation with 1 V

Tubular Coaxial-electrode LEEFT

- Effective against *multiple strains of bacteria*

- Highly *scalable* (180 cm)

Tubular Coaxial-electrode LEEFT

- Potential application in pipelines

Water treatment plant (Primary disinfection)

Water distribution system (Secondary disinfection)

Users

LEEFT device

1 V

Mechanism

I: LEEFT could **enhance** the **permeability** of the cell membrane, so to **promote** the **diffusion** of O$_3$ into the cells to oxidize **intracellular** substances.

→ LEEFT makes O$_3$ more efficient.

II: O$_3$ could **inhibit** the **resealing** of pores induced by **reversible electroporation** during LEEFT.

→ O$_3$ makes LEEFT more efficient.

Mechanism
TriboPump: A Low-cost Hand-Powered Water Disinfection System

Ding et al. @ Georgia Tech

LEEFT-Cu Powered by Cell-Phones

App

OTG hardware

Integrated system

J. Zhou et al. npj Clean water. 2020, 3 (1), 1-9
LEEFT Electrodes

Visualization of LEEFT

- Treat with Poly-L-lysine;
- Immobilize Staphylococcus;

- Stain with live/dead cell stain PI

Apply pulses Operando investigation

Load onto a microscope

Visualization of LEEFT

• Cell membrane damage occurs at the nanowedge tip, where the nano-enhanced electric field has the highest strength.
Visualization of LEEFT

LEEFT: 18 V/2 μs pulse width/100 μs period

- Free-moving cells are attracted to nanowedge tips on both electrodes and then get inactivated.
- Combination of both electrophoretic force and dielectrophoretic force.

Antimicrobial efficiency:
- 2000 ns pulses → 20 ns pulses
 - CEFT: drops dramatically.
 - LEEFT: decreases slightly.

20 ns pulses: LEEFT shows a significant advantage
- EF is reduced by 8 times;
- Pulse number is reduced by 10^6 times.
Operando Mechanism Study of LEEFT

- Reversible electroporation is quick pore closure after the electric field is removed – a unique property of electroporation.
- Quick pore closure under 20 ns pulses at 12 kV/cm.

The ultrafast bacteria inactivation is induced by electroporation.

The nanowedges not connected to the electrodes but between two electrodes: achieve EF enhancement and induce ultrafast bacteria inactivation.

Densely packed smaller nanowires: a potential antimicrobial surface.
Applications of LEEFT

- A transformative water disinfection method
 - High microbial inactivation efficiency
 - Broad-spectrum effective to all pathogens
 - Fast treatment process
 - Low capital, operational, and maintenance cost
 - No impact on the physical and chemical property of the treated water (i.e., neither generating DBPs nor releasing toxic metals nor increasing the corrosivity)
 - Operate on electricity without any chemical consumption
 - No overtreatment concerns
 - No secondary pollution in terms of odor, sound, or light
 - Easy to operate and possible for automatic operation
 - Completely safe to operators and nearby community
Applications of LEEFT

- Other applications
 - Liquid food pasteurization
 - Algae-bloom control
 - Air disinfection
 - Anti-microbial surface
Disinfection is important

We still need better technologies for disinfection

Locally enhanced electric field treatment (LEEFT) is a promising candidate for next-generation disinfection
Thank you!

Xing Xie

October 5, 2022
Thank you for attending our webinar today.

Would you like to attend another AAEES webinar? We have several webinars scheduled. Go to https://www.aaees.org/events to reserve your spot.

Would you like to watch this webinar again? A recording of today’s event will be emailed to you.

Not an AAEES member yet? To determine which type of AAEES membership is the best fit for you, please go to AAEES.org or email Marisa Waterman at mwaterman@aaees.org.

Need a PDH Certificate? You will be emailed a PDH Certificate for attending this webinar within two weeks.

Questions? Email Marisa Waterman at mwaterman@aaees.org with any questions you may have.