Thank you to our Patrons

We will begin our presentation in a few

Potable Reuse in California: Past, Present and Future

R. Shane Trussell, Ph.D., P.E., BCEE February 8, 2023

California
Has Deep
Roots in
Potable
Reuse

Spreading
Projects
Play an
Important
Role and
Offer a NonRO Solution

Average recharge of 215 ML/day

Total Organic Carbon Removal

NDMA

DBP Attenuation

			Event 3	Event 4	Event 5	Average
Cl ₂ Soil Column System	HHAs	Influent	30	36	15	27
		Saturated	<1.0	<1.0	<1.0	<1.0
	TTHMs	Influent	34.7	24.3	15.1	24.7
		Saturated	< 0.50	< 0.50	< 0.50	<0.50
O3 Soil Column System	Bromate	Influent	5.5	< 0.50	1.4	2.5
O3 Soil Sys		Saturated	< 0.50	< 0.50	< 0.50	<0.50

Advent of Integrated Membrane Systems in the Late 90s

West Basin Municipal Water District Commissions First Full-Scale Microfiltration Reverse Osmosis Facility in 1999

Terminal Island Begins Full-Scale Operation of MF/RO in 2003

Orange County Water District Commissions the Groundwater Replenishment System in 2008

Rapid Development of Potable Reuse Regulations

Terminal Island Expansion (12 MGD) and UV-HOCI

Groundwater Replenishment System (130 MGD)

Albert Robles Center (14 MGD)

Pure Water Monterey (5.5 MGD)

Pure Water Oceanside (4.5 MGD)

Pure Water Soquel (1.25 MGD)

The Next Frontier for Potable Reuse in California

San Diego North City Pure Water Treatment Train (34 MGD)

Phase 1 Pure Water San Diego (34 MGD)

East County AWPF (12.5 MGD)

First Potable Reuse Facility with 95% RO Recovery

Las Virgenes MWD (6 MGD)

Draft Direct Potable Reuse Criteria Released

>\$10M in Research to Support DPR Regulations

PROJECTS TO INFORM THE DEVELOPMENT OF DPR REGULATIONS

Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability

Measuring Pathogens in Wastewater

PATHOGENS

CHEMICALS

 Collecting Pathogens in Wastewater During Outbreaks

 Defining Potential Chemical Peaks and Management Options

5 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water

Figure credit: Water Research Foundation

Major Provisions

Pathogen Control

- 4 processes providing at least1-log for <u>each</u> pathogen
 - GWR is 3 processes total
 - SWA is 2-3 processes total
- 3 *mechanisms* including:
 - UV disinfection
 - Physical separation
 - Chemical disinfection

		Surface Water Augmentation	Direct Potable Reuse	
Virus	12	12 to 14	20	
Giardia	10	10 to 12	14	
Cryptospor	ridium 10	10 to 12	15	

Chemical Control – Treatment Requirements

Treatment must be in this order

O3/BAC Requirements

Central Area Project to Produce 53 MGD

Pure Water Southern California (150 MGD)

Advanced Purification Center (0.5 MGD)

City of Los Angeles

Operation NEXT

- Largest Potable Reuse Project (200 MGD)
- 1/3 City's Water Demand
- \$16 Billion

Potable Reuse Will Dramatically Change California

More Seawater Desalination Facilities in Our Future

Thank you for listening!

R. Shane Trussell

President

shanet@trusselltech.com

Thank you for attending our webinar today.

Would you like to attend our next webinar?

We have several webinars happening in the near future. Go to https://www.aaees.org/events to reserve your spot.

Would you like to watch this webinar again?

A recording of today's event will be emailed to all attendees.

Not an AAEES member yet?

To determine which type of AAEES membership is the best fit for you, please go to AAEES.org or email Marisa Waterman at mwaterman@aaees.org.

Need a PDH Certificate?

You will be emailed a PDH Certificate for attending this webinar within the next week.

Questions?

Email Marisa Waterman at mwaterman@aaees.org with any questions you may have.

