Thank you to our Patrons

We will begin our presentation in a few

Leadership and Excellence in Environmental Engineering and Science

Thank you to our sponsor for financially supporting this webinar

Improving Lives Since 1913. Stanley Consultants has been helping clients solve essential and complex energy and infrastructure challenges for over 100 years, successfully completing more than 50,000 engagements in 110 countries and all 50 states and U.S. territories. Values-based and purpose-driven, Stanley is an employee-owned company of engineers, scientists, technologists, innovators and client-service experts who are recognized for their commitment and passion to make a difference.

For more information on Stanley Consultants, please visit http://www.stanleyconsultants.com.

Implementing an Energy Vision

Introduction by Phil Tunnah, Operations Director, Stanley Consultants

Speakers

David Longrie

Manager of Energy Resource

Planning and Innovation

Colorado Springs Utilities

David Tennant, P.E.
Senior Engineer
Stanley Consultants

ABOUT US

SERVICES

ELECTRIC

NATURAL GAS

WATER

WASTEWATER

SINCE 1924, WE'VE PROVIDED 4 SERVICES IN 1 UTILITY.

Our customers enjoy competitive prices, exceptional hometown service, responsible environmental practices and a voice in how we operate.

Connect. Create. Contribute.

Improving Lives Since 1913

110+

100%

Years of Experience

Employee Owned

870+

+50K

Members

Projects

120

Countries Served

#116

ENR's Top 500 Design Firms

Strategic Development

Engineering Design

Asset Management

Program Management

Environmental and Regulatory

Planning and Consulting

Project Management

Innovation & Future-Focused Thinking

DELIVER DIFFERENTLY
At Stanley Consultants, we deliver
differently: higher quality, faster
and with less risk.

Agenda

- PART 1 2020 Energy Vision and Electric/Gas IRPs
- PART 2 Delivery of the Drake Generation Portfolio
- PART 3 2023 Adaption of IRP to Regulatory Drivers

ELECTRIC

MILES OF POWER LINES* 3,968

SUBSTATIONS 54

GENERATION PLANTS 7

SERVICE POINTS 248,277

*overhead and underground power lines.

Avg. interruption duration

Electric reliability

Changing Planning Landscape

- Long-standing responsibilities of safety, reliability and affordability of service
- Major factors driving changes in the industry
 - Environmental and regulatory requirements
 - Need for increased resilience
 - Expanded customer choice
 - Innovation
- Changes have significant implications requiring a clear vision, integrated resource planning and ongoing customer engagement

Colorado Springs Utilities Strategic Plan 2019-2023

Identified Strategic Energy Initiatives, including:

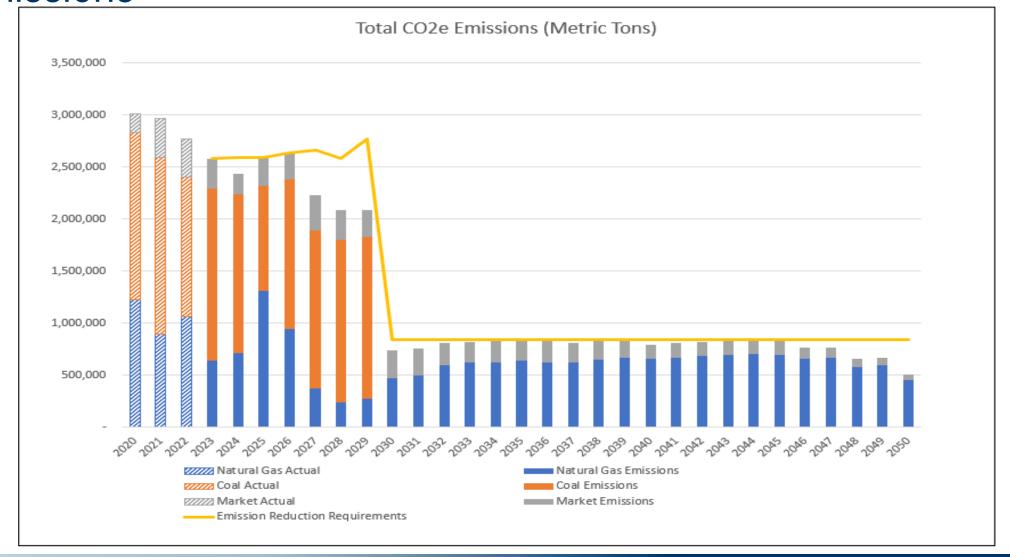
- Energy Vision/Integrated Resource Plans
- Energy Markets
- Grid Modernization
- Rate Design
- New Electric Business Model
- Plant Decommissioning

Energy Vision

Provide resilient, reliable and cost-effective energy that is environmentally sustainable, reduces our carbon footprint and uses proven state-of-the-art technologies to enhance our quality of life for generations to come.

STRATEGIC PILLARS TO SUPPORT THE ENERGY VISION

EIRP and GIRP Process


Phase 1 – Input and Assumptions

- Electric Load Forecasts
- Gas Load Forecasts
- Demand Side Management Potential
- Planning Reserve Margin
- Gas Price Forecast
- Potential Electric and Gas Resources
- Environmental Data
- Energy Markets
- Operational Characteristics

Emissions

Phase 2

Attribute

Weight

Reliability

32%

Ability to react to variable or extreme daily operating conditions (i.e., the lights stay on).

Cost/Implementation

22%

Cost-effectively maintain competitive, affordable rates and the financial health of the utility to drive a strong economy with ability to execute portfolio in desired timeframe.

Environment/Stewardship

22%

Sustainably grow renewable portfolio, reduce carbon footprint and meet all environmental regulations while responsibly protecting and supporting quality of life now and for the future.

Flexibility/Diversity

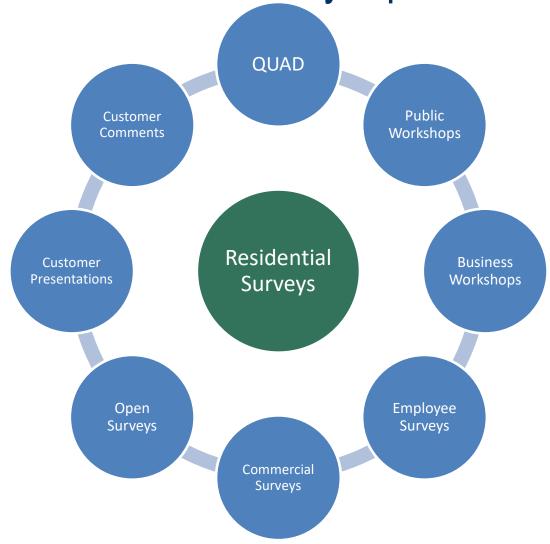
14%

Ability to adapt to regulatory and market disruptions by balancing multiple types of generators and fuel sources, including distributed generation, and reduce reliance on fossil fuels.

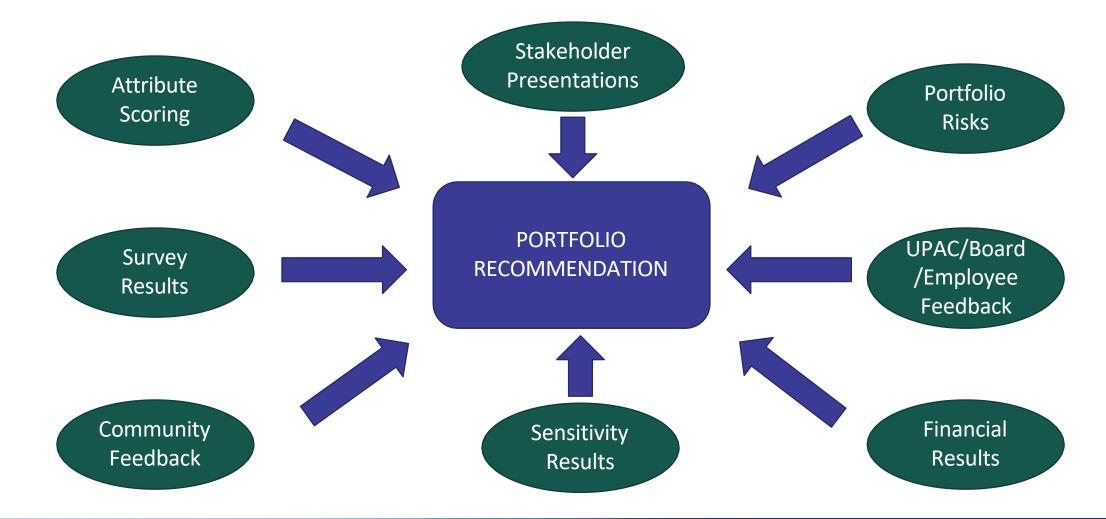
Innovation 10%

Proactively and responsibly integrate technologies and programs.

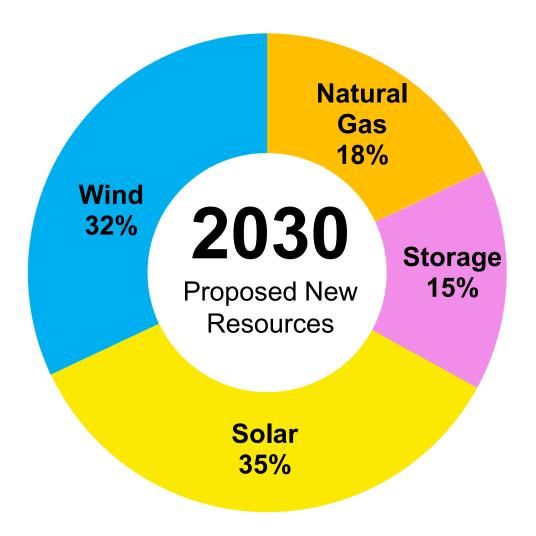
Highest Score



Optimal Portfolio


Voice of the Customer – Community Input

Inputs to Portfolio Recommendation



Electric Integrated Resource Plan | pathways and portfolios selected by UPAC for further evaluation

	Portfolio	Carbon targets	Rank (12)	2023	2026	2030	2035	2040	2050
Reference case	R		©				Drake, Birdsall retire Gas		
	1	2030 80% 2050 90%	©				Drake & Birdsall retire Gas/renewable/ storage		
Pathway B		2030 80%	②		Drake retire	Nixon 1 retire	Birdsall retire		
	5	2050 90%			Gas & DSM	Gas & DSM	Renewable/ storage/DSM		
Pathway C		2030 80%	©		Drake retire	Nixon 1 retire	Birdsall retire		
	9	2050 90%							
		2030 80%	-		Renewable/ storage/DSM	Renewable/ storage/DSM	Renewable/ storage/DSM		Front Range & Nixon 2-3 retire
	10	2050 100%	0						Renewable/ storage/DSM
Pathway D	11	2030 80%			Drake retire	Nixon 1 retire	Birdsall retire		Front Range & Nixon 2-3 retire
		2050 100%	(3)		Non-carbon & DSM	Non-carbon & DSM	Non-carbon & DSM		Non-carbon & DSM
Pathway E				Drake retire	Nixon 1 retire		Birdsall retire		
	12	2030 80%	(1)		Gas/renewable/ storage/DSM	<u> </u>			
	10	2000	(A)	Small, mobile natural gas generator		Nixon 1 retire	Gas/renewable/ storage/DSM		
	16	2050 90%	@			Gas/renewable/ storage/DSM			
	17		0	10000		Nixon 1 retire	Birdsail retire		
			9			Non-carbon & DSM	Non-carbon 8 DSM		
Pathway F	15	2030 100%				Drake, Nixon 1-3, Birdsall, Front Range retire			
	15		0			Renewable/ storage/DSM	1.024		
	18	2040 100%					Drake & Birdsall retire	Nixon 1-3 & Front Range retire	
	18		0					Renewable/ storage/DSM	
	19	2050 100%	-				Renewable/ storage/DSM		Nixon 1-3 & Front Range retire
			0			<u> </u>			Renewable/ storage/DSM

Proposed Additional Resources Available by 2030

a greener FUTURE

- 175 MW Solar Underway
- 200 MW Battery Storage Underway
- 525 MW Solar
- 100 MW Storage
- •625 MW Wind
- 350 MW Gas Generation

TNGG Project Highlight Outline

Project Overview

Before and After Technology Selection

Project Stakeholders

Owner

Engineering

Procurement

Construction

Project Constraints

Site Constraints

Existing high-voltage yard

Existing coal pile and undergrounds

Liquid fuel deliveries

Equipment Scope and Procurement

Equipment reuse

Future Relocation Considerations

Redundancy requirements

Environmental Considerations

Gas turbine stack emissions

SCR ready exhaust and CO catalyst

Fuel oil containment

Drains storage and containment

Project Overview: Before and After

- Existing high-voltage yard
- Existing operational coal plant
- Existing coal pile and conveyance systems

Project Site – After Project

- New 162 MW total, 27 MW each gas turbines
- Reused transformers from coal facility at new plant and tied into existing switchyard

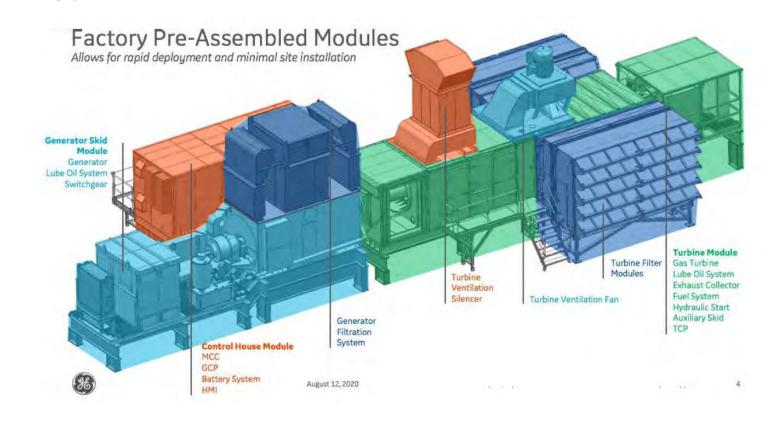
Natural Gas vs. Coal Generation:

- 90 times less sulfur dioxide
- 5 times less nitrogen oxide
- 50% less carbon dioxide
- Natural gas is the least carbon-intensive fossil fuel

Project Overview: Technology Selection

Gas Turbines

General Electric (GE) model LM2500+G4 Xpress


Aeroderivative package, dual fuel (fuel gas & fuel oil), dry low emissions (DLE) combustor (no water injection required to meet emissions)

Quick Start - 8 mins

Efficiency – 39.2%

Reliability – 99.7%

Availability – 98.2%

Project Overview: Technology Selection

Reliability

Inlet Cooling System

Evaporative Cooling Available > 60°F

Protection to ensures power output on hot ambient days

Water Spray Module w/ Drift Eliminator

Gas Turbine Air Inlet

Water Supply

Project Overview: Technology Selection

Reliability

Inlet Heating System

Designed to -20°F

Equipment

Exhaust Heat Exchanger Electric Heaters

Protections

Turbine Blade Anti-Icing Emissions Compliance

Exhaust Air Heat Exchanger

Electric Heaters and Air Injection

Project Stakeholders

Owner

Colorado Spring Utilities

Engineering

Stanley Consultants
Civil, Structural, Electrical, Mechanical, Instrumentation and Controls

Procurement

Colorado Springs Utilities Procurement Department

Construction

TIC – The Industrial Company MMR

Major Equipment

General Electric – Gas Turbines

Project Constraints - Site Constraints

Existing substation and high-voltage yard

South Plant Substation

Project Constraints - Site Constraints

Existing Coal Pile and Conveyance Equipment

Geotechnical Evaluation and Soil Borings

South end of site Middle of site as coal supply used North end of site once conveyance equipment removed

Project Constraints - Site Constraints

Existing Underground Utilities

Maintained Existing Site Drainage

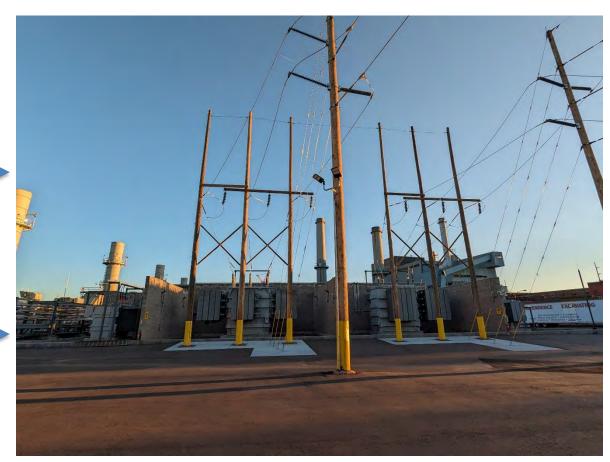
Overhead Power Lines

Design And Construction to Avoid Interference with Existing Transmission Lines

Project Constraints - Equipment Scope and Procurement

Reuse of equipment:

- (2) Generator Step-Up (GSU) Transformers
- (2) Unit Aux Transformers
- (2) Switchgear Lineups


From decommissioned Drake coal units 6 and unit 7

Original Drake Location Unit 6

Original Drake Location Unit 7

New Plant Location

Project Constraints - Future Relocation Considerations

Redundancy Requirements:

- (6) Gas Turbines
- (6) Fuel Gas Compressors
- (6) Fuel Oil Storage Tanks

Gas turbine stack emissions Third-party emissions testing

GE emissions guarantees

Fuel Gas:

EMISSIONS ARE VALID FOR T2 WITHIN 10°F-100°F AND A GTG LOAD DOWN TO 50% AS DEFINED IN STEADY STATE CONDITIONS FOR EMISSIONS GUARANTEE

NOX: 25 PPMVD AT 15% O2

CO: 1.25 PPMVD AT 15% O2, after catalyst

VOC: 2.8 PPMVD AT 15% O2, after catalyst

FORMALDEHYDE: 91 PPBVD AT15% O2, after catalyst

PM10: 4 lb/h (total with evap on)

Fuel Oil:

EMISSIONS ARE VALID FOR T2 WITHIN 10°F-100°F AND A GTG LOAD DOWN TO 75% AS DEFINED IN STEADY STATE CONDITIONS FOR EMISSIONS GUARANTEE

NOX: 74 PPMVD AT 15% O2

CO: 2.8 PPMVD AT 15% O2, after catalyst

VOC: 12.1 PPMVD AT 15% O2, after catalyst

FORMALDEHYDE: 91 PPBVD AT15% O2, after catalyst

PM10: 10.7 lb/h (total with evap on)

EPA Test Methods

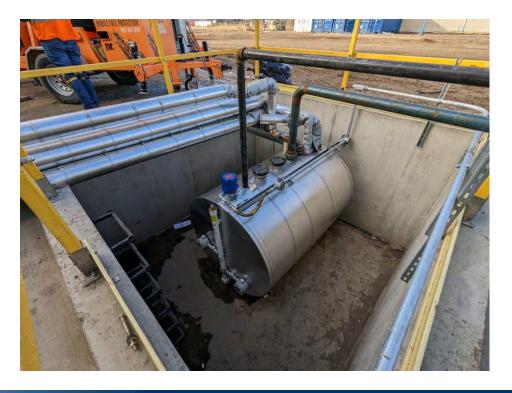
ENGINE CONDITION: FIELD TEST METHODS	NEW AND CLEAN ≤ 200 SITE FIRED HOURS
PERFORMANCE:	GE POWER & WATER SGTGPTM
NOX:	EPA METHOD 20
CO:	EPA METHOD 10
PM10:	EPA METHOD 5 / 202
FORMALDEHYDE:	EPA METHOD 320
VOC:	EPA METHOD 25A/18

SCR ready exhaust (pre-installed ammonia nozzles)

CO catalyst in exhaust

Fuel oil containment strategy

Fuel truck unloading
Self rising containment berm
Storage tanks
Secondary containment by metal dike
Spills
Concrete raised curbs



Drains, Storage and Containment

Above ground tanks drain into pre-fabricated concrete pits

Regulatory Changes

Clean Energy Plan

- Retail Sales
- Market Emissions

Clean Heat Plan

- Building Energy Performance Standard
- New Source Performance Standards for Greenhouse Gas Emissions

Clean Heat Plan

Colorado State Law as of 2021

2024-2025

Spend

2%

of total gas revenue working towards achieving

4%

Colorado
Springs Utilities
submitted plan
on July 28, 2023

2026-2030

Spend

2.5%

of total gas revenue working towards achieving

Target: reduction in greenhouse gas below 2015 levels

Target: reduction in greenhouse gas below 2015 levels

Meeting our Energy Vision Pillars

Thank You

Questions?

Thank you for attending our webinar today.

Would you like to attend our next webinar?

We have several webinars happening soon. Go to https://www.aaees.org/events to reserve your spot.

Would you like to watch this webinar again?

A recording of today's event will be emailed to all attendees.

Not an AAEES member yet?

To determine which type of AAEES membership is the best fit for you, please go to AAEES.org or email Marisa Waterman at mwaterman@aaees.org.

Need a PDH Certificate?

You will be emailed a PDH Certificate for attending this webinar.

Questions?

Email Marisa Waterman at mwaterman@aaees.org with any questions you may have.

