Full Plant Deammonification for Energy Neutral Wastewater Treatment

Presenter: Charles Bott, PhD, PE, BCEE
Manager, Chief, Special Projects
DC Water

Presenter: Sudhir Murthy, PhD, PE, BCEE
Manager, Clean Water Quality and Technology
DC Water
<table>
<thead>
<tr>
<th>The People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olawale Akintayo</td>
</tr>
<tr>
<td>Charles Bott</td>
</tr>
<tr>
<td>Ryder Bunce</td>
</tr>
<tr>
<td>Kartik Chandran</td>
</tr>
<tr>
<td>Michael Desta</td>
</tr>
<tr>
<td>Norman Dockett</td>
</tr>
<tr>
<td>Haydee De Clippeleir</td>
</tr>
<tr>
<td>Dana Fredericks</td>
</tr>
<tr>
<td>M. Gomez Brandon</td>
</tr>
<tr>
<td>Mofei Han</td>
</tr>
<tr>
<td>Martin Hell</td>
</tr>
<tr>
<td>Becky Holgate</td>
</tr>
<tr>
<td>Rebecca Jimenez</td>
</tr>
<tr>
<td>Hansa Keswani</td>
</tr>
<tr>
<td>David Kinnear</td>
</tr>
<tr>
<td>Yi Wei Ma</td>
</tr>
<tr>
<td>Matthew Michaelis</td>
</tr>
<tr>
<td>Mark Miller</td>
</tr>
<tr>
<td>Sudhir Murthy</td>
</tr>
<tr>
<td>Geert Nyhuis</td>
</tr>
<tr>
<td>Sylvia Okogi</td>
</tr>
<tr>
<td>Ahmed Omari</td>
</tr>
<tr>
<td>Maureen O’Shaughnessy</td>
</tr>
<tr>
<td>Hong Keun Park</td>
</tr>
<tr>
<td>Sabine Podmirseg</td>
</tr>
<tr>
<td>Pusker Regmi</td>
</tr>
<tr>
<td>Rumana Riffat</td>
</tr>
<tr>
<td>Andrew Shaw</td>
</tr>
<tr>
<td>Beverley Stinson</td>
</tr>
<tr>
<td>Imre Takacs</td>
</tr>
<tr>
<td>Claire Welling</td>
</tr>
<tr>
<td>Bernhard Wett</td>
</tr>
</tbody>
</table>

DCWATER.COM
• High Rate, CEPT or A-Stage:
 – 55-75% COD removal
• B-stage: 10 - 15 days SRT
 – Deammonification
Blue Plains AWTP

- 370 mgd (AA) to 518 mgd (Max Day)
- TN < 7.5 mg/l & TP < 0.18 mg/l
- Future TN ~ 3 mg/l peak annual flows
- 12°C winter monthly average
Fundamentals of Nitrification - Denitrification

Autotrophic Aerobic Environment

Oxygen demand 4.57 g / g NH$_4^+$-N oxidized
Carbon demand 4.77 g COD / g NO$_3^-$-N reduced

1 mol Nitrate (NO$_3^-$)

Nitrite Oxidizers

25% O$_2$

1 mol Nitrite (NO$_2^-$)

Ammonia Oxidizers

75% O$_2$

1 mol Ammonia (NH$_3$/NH$_4^+$)

Heterotrophic Anoxic Environment

1 mol Nitrite (NO$_2^-$)

40% Carbon

½ mol Nitrogen Gas (N$_2$)

60% Carbon

Oxygen demand 4.57 g / g NH$_4^+$-N oxidized
Carbon demand 4.77 g COD / g NO$_3^-$-N reduced

dcwater.com
Fundamentals of Deammonification

Autotrophic Aerobic Environment

ANAAMOX
Anaerobic Ammonium Oxidation
Autotrophic Nitrite Reduction
(New Planctomycete, Strous et. al. 1999)

\[
\begin{align*}
\text{Oxygen demand } & 1.9 \text{ g / g NH}_4^+ \text{-N oxidized} \\
\end{align*}
\]

\[
\begin{align*}
\text{NH}_4^+ + 1.32 \text{ NO}_2^- + 0.066 \text{ HCO}_3^- + 0.13 \text{ H}^+ & \rightarrow \\
0.26 \text{ NO}_3^- + 1.02 \text{N}_2 + 0.066 \text{ CH}_2\text{O}_{0.5}\text{N}_{0.15} + 2.03 \text{ H}_2\text{O} \\
\end{align*}
\]

Partial Nitrification
46% O\(_2\)

1 mol Ammonia
\((\text{NH}_3/\text{NH}_4^+)\)

Oxygen demand 1.9 g / g NH\(_4^+\)-N oxidized
How mature is deammonification technology?

- Main-stream Deammonification
 - Emerging technology
- Side-stream Deammonification
 - State of the Art
- Conventional N-removal technologies
 - Established
Objective of bench-scale pilot at DC Water

• Investigate fundamental process kinetics and control mechanisms identified for NOB out-selection, AOB and anammox enrichment, development and calibration of process model.
Objective of pilot-scale tests at HRSD, Virginia

• Focus on NOB out-selection and control optimization to support design work at considered plant.
• Biofilm Post-Anoxic Anammox

WERF-Mainstream Deammonification
3 different sites and scales
Objective of full-scale pilot at WWTP Strass

- Demonstration projects at Strass WWTP and Glarnerland WWTP is to demonstrate the feasibility of the deammonification concept, applicable control strategies.
Our Recipe

• Anammox
 – Anammox Bioaugmentation
 – Anammox Retention

• AOB
 – AOB Bioaugmentation

• NOB Out-Selection
 – Aggressive Aerobic SRT Management
 – Ammonia Residual
 – High DO
 – Intermittent Aeration
 – Rapid Transitions to Anoxia

• Effluent Polishing
Our Recipe

• Anammox
 – Anammox Bioaugmentation
 – Anammox Retention (long SRT maintained in granules or biofilms)
• AOB
 – AOB Bioaugmentation
Cyclone, Sieve or Biofilm Media?

Three anammox retention procedures
1) Cyclones- Strass
2) Sieves- Blue Plains
3) Biofilm Media- HRSD
Cyclone for selective SRT

cyclone under-flow (recycled) and overflow (wasted)
Our Recipe

- NOB Out-Selection
 - Aggressive Aerobic SRT Management
 - Ammonia Residual
 - High DO
 - Intermittent Aeration
 - Rapid Transitions to Anoxia

- Effluent Polishing
Oxygen Affinity

SNPR (mgN/gVSS.d) vs DO (mg/L)

- A - AOB
- A - NOB
- AOB Monod
- NOB Monod
Frequently used parameter set for maximum AOB- and NOB-growth rates and oxygen affinity (K_O)

<table>
<thead>
<tr>
<th></th>
<th>AOB-growth</th>
<th>NOB-growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_{max} [1/d]$</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Arrhenius</td>
<td>1.07</td>
<td>1.06</td>
</tr>
<tr>
<td>$k_O [mg DO/L]$</td>
<td>0.25</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Oxygen and Nitrogen Affinities

From: Current WERF Study

DC Water Trials

Low/Constant DO

Low/Intermittent aeration

High/Intermittent aeration
Dissolved Oxygen Slope and Profiles

HIGH DO INTERMITTENT AERATION
(05/04/2012)

2.5min/20min

DO, mg/L

Time, hh:mm
HIGH DO
Intermittent Air – “Anammox Activity”

HIGH DO INTERMITTENT AERATION
(1 MONTH)

Concentration (mg/L)
NH₄-N; NO₂-N; NO₃-N

~ - 4.2 mgN/L
~ - 5 mgN/L

Time (hr)

NH₃
NO₂
NO₃
HIGH DO
Intermittent Air – “N Profiles”

2 mg/L Ammonia Residual

-8 mgN/L

+1 mgN/L

Time (hr)

Concentration (mg/L)

NH4-N, NO2-N, NO3-N

SCOD Concentration (mg/L)

NH3
NO2
NO3
SCOD
HIGH DO
Intermittent Air – “N Profiles”

No Ammonia Residual

- Concentration (mg/L) NH₄-N; NO₂-N; NO₃-N
- SCOD Concentration (mg/L)

Time (hr)

- ~ +4 mgN/L
- ~ -8 mgN/L

NH₃ NO₂ NO₃ SCOD
HRSD Process Schematic

A-stage HRAS

B-stage NiD eMA/anammox

RWI Influent

Air

WAS

RAS

Air

WAS

RAS
Ammonia vs NOx (AVN) Controller

- **Ammonia (NH₄-N)**
 - **AnDur:** 0 mins
 - **AerDur:** 0 mins
 - **DO:** 0 mg/L
 - **Online NH₄-N - (NO₃-N + NO₂-N):** 0

- **Nitrite (NO₂-N) & Nitrate (NO₃-N)**
 - **Min AerDur:** 4 mins
 - **Max AerDur:** 8 mins
 - **Min AnDur:** 4 mins
 - **Max AnDur:** 8 mins
 - **DO:** 1.6 mg/L
 - **Total cycle duration:** 12 mins

DO: 0 mg/L
DO: 1.6 mg/L

NH₄-N - NO₂-N = 0
AVN control

Aerobic Duration
Anoxic Duration
NH4-N-NOx-N

Minutes
mgN/L

8:09 PM 8:38 PM 9:07 PM 9:36 PM 10:04 PM 10:33 PM 11:02 PM 11:31 PM 12:00 AM
Process Performance

Nitritation/ Denitrification

Post- Anoxic Anammox MBBR

Influent (mgN/L) Effluent (mgN/L)

11/7 11/17 11/27 12/7 12/17 12/27

Eff NOx-N Eff NH3-N A-stage Inf TKN

Inf TIN Eff TIN

11/7 11/17 11/27 12/7 12/17 12/27

mgN/L
Strass Demonstration

- Carousel type aeration tank at Strass WWTP providing a DO-range of 0 to 1.7 mg/L along the flow-path.

Cyclones installed at the B-stage in Strass, Cyclone A (left), Cyclone B since early September 2011 (right).
Full-scale experiments at WWTP Glarnerland plant loading profiles (PE) before and after project start

Comparison of temperature profiles (°C)

plant loading profiles (PE) before and after project start

comparison of temperature profiles (°C)
The last samples show ammonia removal during anaerobic activity test (anammox activity).

Only 25% of NOx produced from ammonia oxidation is converted to nitrate during aerobic activity test of the last sample.
Comparison of this year’s and last year’s operational data of the full-scale pilot Strass indicating advanced NOB-repression (typically high nitrate level at Christmas peak-load; similar temperature conditions of ca. 10°C, load conditions and ammonia effluent concentrations of ca. 2-5 mgN/L for both years)
MODEL PARAMETER CALIBRATION
Simulation Results

High/Intermittent aeration

<table>
<thead>
<tr>
<th>DO Profiles</th>
<th>N Profiles</th>
<th>AMX Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AOB-growth</th>
<th>NOB-growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_{\text{max}} \times X_a / Y_a$</td>
<td>193</td>
<td>137</td>
</tr>
<tr>
<td>k_O [mg DO/L]</td>
<td>0.40</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Specific nitrogen process rates for AOB and NOB yielded from constant DO-tests
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olawale Akintayo</td>
<td>Matthew Michaelis</td>
</tr>
<tr>
<td>Charles Bott</td>
<td>Mark Miller</td>
</tr>
<tr>
<td>Ryder Bunce</td>
<td>Sudhir Murthy</td>
</tr>
<tr>
<td>Kartik Chandran</td>
<td>Geert Nyhuis</td>
</tr>
<tr>
<td>Michael Desta</td>
<td>Sylvia Okogi</td>
</tr>
<tr>
<td>Norman Dockett</td>
<td>Ahmed Omari</td>
</tr>
<tr>
<td>Hayde De Clippeleir</td>
<td>Maureen O’Shaughnesssy</td>
</tr>
<tr>
<td>M. Gomez Brandon</td>
<td>Hong Keun Park</td>
</tr>
<tr>
<td>Dana Fredericks</td>
<td>Sabine Podmirseg</td>
</tr>
<tr>
<td>Mofei Han</td>
<td>Pusker Regmi</td>
</tr>
<tr>
<td>Martin Hell</td>
<td>Rumana Riffat</td>
</tr>
<tr>
<td>Becky Holgate</td>
<td>Andrew Shaw</td>
</tr>
<tr>
<td>Rebecca Jimenez</td>
<td>Beverley Stinson</td>
</tr>
<tr>
<td>Hansa Keswani</td>
<td>Imre Takacs</td>
</tr>
<tr>
<td>David Kinnear</td>
<td>Claire Welling</td>
</tr>
<tr>
<td>Yi Wei Ma</td>
<td>Bernhard Wett</td>
</tr>
</tbody>
</table>