Removing the Primary Barrier to Successful Mainstream Deammonification

Sudhir Murthy, Ph.D., P.E., BCEE **Innovation Chief**

Outline

- Background
 - Blue Plains AWTP [Today and Tomorrow]
 - Nitrogen Shortcut [Benefits/Challenges]
 - Anammox separation approaches
- Screen/Sieve Application
 - Mechanisms & Research Findings

Annual Operation Cost

- Aeration (~\$25MM/Yr)
 - 34% for aeration
- Chemicals (~\$25MM/Yr)

Blue Plains Facilities Upgrade

Blue Plains Tomorrow

- A-Stage (55-75% COD removal)
 - ▶ B-Stage Deammonification *(Research Focus)*

Conventional Nitrogen Removal

Partial Nitritation/Anammox - Deammonification

- > 65% reduction in Oxygen
- Eliminate demand for supplemental carbon

Primary Challenge - Selection and Retention of Anammox

- 1. Slow growing organisms
 - Anammox doubling time → 1-2 weeks

[Versus]

- AOB doubling time \rightarrow 1 day
- NOB doubling time \rightarrow 1.5 day

- 2. Optimize retention of AOB
- 3. Out-select NOB

Retention Techniques

- Selection for heavy granules (airlift reactors)
- Selection for well settling granules (SBR)
- Selection for dense granules (cyclones)
- Attached growth [Ex. MBBR]

Screen Concept

Flocs [compressible]

- Fluffy, Brown Particles
- ▶ 10-150 um
- Majority NOB and AOB

Granules [non-compressible]

- Dense, Redish Particles
- > 200 um
- Majority Anammox

Screens Selection Mechanisms & Research Objectives

Selection Based on:

Size

- Determine long term effect of sieve size used for screening to separate organism SRT
- Effect of frequency of sieve usage on particle distribution

Compressibility

Floc Out-selection & anammox retention efficiency

Shear Resistance

 Effect on anammox nitrogen removal using a mechanical method for NOB Removal

Overall:

Best method for deammonification operation (Anammox retention/NOB removal)

Selection Based on Size

Anammox Retention - Size selection

- Effective anammox retention
 - Average 85%
- Size selection selects for activity
 - Smaller particles have higher activity

Effect of Size on Reactor Rates

Effect of Frequency on Particle Distribution

Selective wasting of NOB – Size selection

Effective NOB out-selection

Size selection

NOB activity found in smaller size

Nitrogen Processing Rate

particles

Effect of Size on Effluent Quality

Selection Based on Compressibility

- Method for washout
- Smaller particles are compressible flocs
- Larger granules are rigid
- Prevent accumulation of nitrite and nitratation

Experimental Design

Side View

Top View

Selective Retention of AOB – Size/Compressibility

Selection Based on Shear Resistance

- Application of shear stress to remove NOB from granules
- Effects of shear on anammox
- Nitrogen Removal Performance
- Settleability (Retention)
- Particle Distribution

FISH Image
AOB Anammox NOB

Experimental Design

 Shear rate (G) provides the stress applied

- Shear calculated from 500, 800, 1000, 1200 and 1500 RPM
- Sludge concentration of TSS 2000 mg/L

Experimental Design

■ Size (no shear)

Retained

- Applying shear showed an improvement in granules redness
- Improve AOB and NOB Outselection

AOB

Mixed liquor

AerAOB activity rate (mg N/L/h)

1

Conclustions

- Effective Retention of the Right Amount & Size of Anammox Organisms Using Size Selection
- Effective Wasting of the NOB Using Size Selection
- Controlled Retention of the AOB using both Size and Compressibility Selection for Optimized Performance
- Improve System Functionality Using Size, Compressibility and Shear Selection.