

Upper Big Sioux River Watershed Project

Lake Kampeska Phosphorus Removal Demonstration Project

2014 Excellence in Environmental Engineering & Science
National Press Club Washington, DC
April 24, 2014

Project Team

Lake Kampeska Water Project District

Introduction

Washington, DC

Upper Big Sioux River Watershed Project an EPA 319 program

- Put in place by the Clean Water Act 1972
- Targets Nonpoint Source Pollution
- Funding is 60/40, EPA / Local
- Upper Big Sioux Project Started about 20 years ago as the Lake Kampeska Watershed Project
- Was initiated by the Kampeska chapter of the Isaac Walton League
- Providing incentives and technical advise to install clean water practices

The Swirls of Algae

Basic Concepts

- Lake is nutrient rich
- Phosphorus feeds wild algae which degrades lake
- Algae eat nutrients
- Algae are easy to grow
- Basic growth requirements are light, nutrients,
 CO2
- The existing plant has the tanks, pumps, plumbing and control system to make the whole process possible

The Big Questions

- Can the treatment plant be efficient enough to counter spring loadings and make headway to reduce overall lake P levels?
- What will be the annual operating cost once we reach maximum efficiency?
- As the overall concentration of P decreases in the lake, will there be a decrease in sediment-based P releases due to fewer low oxygen events?
- Will we still be able to fish for walleye off the sea wall?

Lake Kampeska Filtration Plant

Conventional Surface Water Treatment Plant

- Originally designed for chemical/ physical potable water treatment processes
- Out of service for several years
- Generally in good working order

CONVERTING A DRINKING WATER TREATMENT PLANT TO GROW ALGAE

Comparison with Conventional Algae Biofuel Systems

Algae Biofuel Systems

- Large Surface Area to Volume Ratio
- Use natural sunlight
- Cultivating specific algal species for maximum fuel production

Lake Kampeska Plant

- Small Surface Area to Volume Ratio
- Artificial Light
- Cultivate native algal species for maximum phosphorus removal

Most Significant Design Issue For Lake Kampeska Filtration Plant

- Encourage native algae populations
- Encourage an algae species that settles, such as Pediastrum sp.
 - Easier to separate and harvest

Blue Green Algae

Pediastrum borianum

Key Technical Issues for Algal Growth

- Algal growth rate
- Algal decay rate
- Carbon Dioxide
- Temperature Effects
- Light Intensity and Distribution
- **Optimum Mixing**

Wavelength (nm)

Comparison with Activated Sludge Process

Design Parameter	Algae Cultivation	Activated Sludge
S (Substrate)	Light	Organic Carbon
X (microorganisms)	Algae	Bacteria
Nutrients	P, NCO	P, NO_2
Hydraulic Retention Time (HRT = V/Q)	≈4 days	4 – 8 hours
Mean Cell Residence Time $(MCRT = VX/Q_wX_w)$	≈4 days (warm water) ≈10.5 days (cold water)	10 days

Lake Kampeska Biological Phosphorus Removal Water Treatment Project

HOW IS THE SYSTEM WORKING?

Algae Species

Microscopic view of algal species, Chaetophora (left) and Spirogyra (right), growing in cold (38 degree F) water

Results

July Phosphorus - 10% reduction
August Phosphorus - 5% increase
September Phosphorus - 4% reduction
October Phosphorus - 8% reduction
November Phosphorus - 2% reduction
December Phosphorus - 5% reduction
January Phosphorus - 30% reduction

Identified Algae Species

- Chaetophora
- Spirogyra

Pump Motor Failed is in for Warranty Repair/Replacement

Student Tours

Watertown High School science class facilities tour

Conclusions

- There are a large number of variables
 - Little literature is available to help make operational decisions
 - Long time to determine what changes improved or harmed the performance

- We can grow algae to reduce the phosphorus concentrations before returning it to the lake
 - It works, but the process continues needing optimization

Lessons Learned to date....

- Algae do not read the studies or behave accordingly.
- There are never enough valves or connections in a pilot/demonstration project.
- Clarifier detention time too long and algae die and release phosphorus into the water
- We also grow lots of water fleas.

Next Steps

Vary detention time in clear well (change flow rate)

 Continue to identify and track algal species as they become dominant in the clear well

- Compare to summer warm water operations
- SDSU environmental engineering and biology students to assist with optimization and operation of the facility

Questions

Contact Information

Steven Quail, P.E. BCEE HDR Engineering, Inc. Sioux Falls, SD (605)977-7768 steven.quail@hdrinc.com Roger Foote Upper Big Sioux River Project Watertown, SD (605)882-5250 rfoote@iw.net