Digester Complex Rehabilitation Improvements for the Des Moines Metropolitan Wastewater Reclamation Authority

Presented by
Scott Carr, PE, BCEE
Dustin Craig, PE
Pat O’Neill, PE
James Beck, PE

April 23, 2015
Agenda

• Background
• Drivers for the project
• Key elements of the design
• Benefits to WRA and its customers
BACKGROUND
Des Moines Wastewater Reclamation Authority (WRA)

- WRA Serves 17 member agencies in three counties
- City of Des Moines is the contract operator of the WRA’s wastewater reclamation facility (WRF)
- Average dry-weather flows of 67 million gallons per day (GPD)
- Mission Statement - Preferred hauled waste facility for Iowa and surrounding areas
WRF Facilities Overview

67 MGD
Primary & Secondary Treatment

0.14 MGD
Hauled Wastes
- >30 loads/day
- ~45% of VS load

Biogas Storage

Biogas Uses
- Process heating
- Building heating
- Power generation
- Industrial user

Anaerobic Digestion

Sludges
Biosolids to Land Application
A Wastewater and Hauled Organic Waste Treatment Center
Hauled Waste Program Provides a Valuable Service to Multiple Stakeholders

- Value of hauled waste program to WRA
 - Generates > $1.5 million annually in hauled-in waste tipping fees
 - Diverts FOG from collection system
 - Creates biogas for beneficial use
 - Produces ~1,300,000 cf/day
 - Generates electric power (1.8 MW existing, expanding to 4.8 MW)
 - Heats three plant boilers
 - Sells ~ 700,000 cf/day

- Valuable service to industries
 - Receive wastes at competitive prices
 - Provide FOG haulers with outlet
 - Provides low cost energy to neighboring industry

- Revenues help lower costs to rate payers
DRIVERS FOR THE PROGRAM
Key Drivers for the Improvements

Hauled waste receiving limitations
 • Single tank limited ability to clean

Digester improvements
 • Mixing systems had failed
 • Floating covers failing
 • Hauled wastes create excessive foam

Biogas handling improvements
 • Storage needed to facilitate use
KEY ELEMENTS OF THE DESIGN
Hauled Waste Upgrade - 2010

- Small (~1,200 gal) “rock-boxes”
- Precast polymer concrete
- 4” and 6” quick-connects
- Connection to existing foul air system
- Traps grit and debris before larger tank
Hauled Waste Upgrade - 2010
Submerged Fixed Concrete Covers Selected for Primary Digesters

- Concentrate scum and foam at central point
 - Allows spray suppression to be more effective
 - Large diameter draw-off for rapid removal

- Additional benefits
 - Ease of maintenance
 - Increases tank capacity 8%
New Covers Required Extensive Support System
Interior Columns Used to Support the Cover
New Submerged Fixed Covers
New Submerged Fixed Covers
New Gas Membrane Cover on Secondary Digester
Mixing System Design

Typical Digestion Mixing Systems

Gas Bubble
- Low energy input
- Bottom-to-top pattern
- Maintenance issues

Mechanical
- Low energy input
- Top-to-bottom pattern
- Maintenance issues

Pumped Recirculation
- High energy input
- Highest induced velocity
- Tangential swirl pattern
- Suitable for diverse covers
Computational Fluid Dynamics (CFD) Modeling

- Recommended 24-inch diameter draft tubes

- Cost savings:
 - $700K in capital (4% of total project construction cost)
 - $36K/yr in O&M (800,000 kWh/yr in energy consumption)
Draft Tube Mixers Installation
New Mixing Has Improved Biogas Production

Cubic Feet Per Day

All mixers operational
BENEFITS TO WRA
Benefits to WRA

- New covers reduce maintenance requirements and increase capacity
- New mixing enhances digestion performance
- Less downtime for outside haulers
- Increased revenue for WRA
Thank You