Briefing on:

Greening Grey Infrastructure: A Lightweight Alternative to Upgrade the District’s Water Supply Facilities

Briefing for:

Excellence in Environmental Engineering and Science Conference

April 23, 2015
Overview

- Background
- Project Goals, Locations, and GI Practices
- Green Roof Design and Construction
- Pre- and Post-Construction Monitoring
- Maintenance
- Green Jobs
- Education and Outreach
- DC Clean Rivers Project Green Infrastructure Next Steps
DC WATER AND DC CLEAN RIVERS PROJECT

Green Roof at Fort Reno Reservoir
Background: What is DC Water?

- Independent Authority formed in 1996
- Formerly Water and Sewer Utility Administration (WASUA) under Dept. of Public Utilities
- Services Provided
 - Water Distribution
 - Wastewater Collection and Treatment
 - Stormwater Collection and Conveyance
- Largest advanced wastewater treatment plant in the world – 370 mgd capacity
- Serves 2 million people
 - District of Columbia
 - Parts of Maryland & Virginia
Background: Separate and Combined Sewer Systems

100% of suburbs
67% of D.C.

0% of suburbs
33% of D.C.
Background: Where are Combined Sewers Located?

- 1/3 area is combined (12,478 acres)
- 53 CSO outfalls
 - 15 to Anacostia
 - 10 to Potomac
 - 28 to Rock Creek
- Three receiving waters
 - Anacostia River
 - Potomac River
 - Rock Creek
Background: DC Clean Rivers Project Development

1998 - LTCP Started
2002 - Final LTCP
2003 - LTCP Meets WOS (EPA/DC)
2005 - Consent Decree Signed
2007 - New Nitrogen limits require changing LTCP
2011 - DC Water begins evaluating GI for Potomac and Rock Creek

2014 - DC Water proposes changing LTCP to include Green Infrastructure

Public Participation

LTCP implementation
Total Nitrogen implementation

DC Clean Rivers Project
Background: DC Clean Rivers Project Scope and Timeline

DC CLEAN RIVERS PROJECT AND NITROGEN REMOVAL PROGRAMS

- DC Clean Rivers Project: $2.6 Billion
- Nitrogen Removal: $950 Million
- Total > $3.5 Billion
- 20 yr implementation (2005 – 2025)
- 96% reduction in CSOs & flood relief in Northeast Boundary
- Approx 1 million lbs/yr nitrogen reduction predicted

Legend:
- Red: Anacostia River Tunnel System
- Yellow: Potomac River Tunnel
- Blue: Piney Branch Tunnel
- Purple: Pumping Station Rehabilitation
- Orange: Known Flood Area

DC Clean Rivers Project Scope:
- Luzon Valley (Separated)
- Separated or Diversion Work Completed
- Green Infrastructure at DC Water Facilities
- Combined Sewer Area
- East Side Pumping Station
- White House
- US Capitol
- Potomac Pumping Station
- Main and O Street Pumping Stations
- Separate CSO 006
- Poplar Point CSO 006
- Enhanced Clarification Treatment and Nitrogen Removal at Blue Plains

-known flood area

LEGEND
• DC Clean Rivers Project: $2.6 Billion
• Nitrogen Removal: $950 Million
• Total > $3.5 Billion
• 20 yr implementation (2005 – 2025)
• 96% reduction in CSOs & flood relief in Northeast Boundary
• Approx 1 million lbs/yr nitrogen reduction predicted
Background: Progress to Date Controlling CSOs

CSO Overflow (mg/avg year)

- Anacostia River: 2142
- Potomac River: 1063
- Rock Creek: 54
- Total System: 3254

Legend:
- 1996
- 2013
- LTCP Completed (DC Water Formed)
FORT RENO RESERVOIR GREEN ROOF
‘Low Impact Development Retrofit at DC Water Facilities’ Project

- Project required by Consent Decree
- Low Impact Development (LID)/Green Infrastructure (GI) at three DC Water Sites
 - Multiple GI practices designed to manage 1.2"
 - Green Roofs
 - Pervious Pavement
 - Bioretention

<table>
<thead>
<tr>
<th>Practice</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIORETENTION</td>
<td>Captures surface runoff in a shallow, vegetated depression underlain with a permeable soil medium.</td>
</tr>
<tr>
<td>GREEN ROOF</td>
<td>Intercepts rainfall via a growing medium and vegetation on a roof.</td>
</tr>
<tr>
<td>PERVIOUS PAVEMENT</td>
<td>Permits percolation of surface runoff through a permeable media (concrete, asphalt, or pavers) into a gravel subgrade.</td>
</tr>
</tbody>
</table>
Project Sites

- Fort Reno Reservoir
 - 8,400 sf Pervious Pavement
 - 42,400 sf Green Roof
- East Side Pumping Station
 - 6,570 sf Green Roof
- Anacostia Water Pumping Station
 - 1,000 sf Pervious Pavement
 - 1,500 sf Bioretention
Fort Reno Reservoir Site
Existing Conditions

- ACCESS ROAD
- TURF
- ABANDONED PUMP HOUSE
- MULCHING AREA
- ONGOING CONSTRUCTION AREA
- RESERVOIR
- PARKING AREA
- TRAILER OFFICE
- OFFICE
- TANK #1
- TANK #2

View of Parking Area, Office, and Trailer Office
West End of Reservoir from Northwest Corner
Fort Reno Reservoir Existing Conditions

- Built: 1926-28
- 5.8 million gallon covered drinking water reservoir serves District of Columbia
- Access hatches throughout
- Historic ventilation houses at each end
- Roof:
 - Approximately 1-acre
 - Repairs and upgrades to reservoir and roof in 1997
 - Internal and external inspection in 2010
 - 8-inch thick concrete slab with 2-way reinforcing
 - Built-up roof

EXISTING RESERVOIR ROOF:

- Roofing material
- Lightweight concrete
- Foam board Insulation
- Concrete slab roof
- Reservoir wall

Existing Reservoir Roof
Fort Reno Reservoir Green Roof Structural Assessment

- Structural analysis indicated no structural deficiencies
- Existing roofing material loading = 30 psf
- Concrete and Rebar Sampling Program:
 - Three 6-inch concrete cores
 - Reinforcing steel from wall sample

<table>
<thead>
<tr>
<th>Item</th>
<th>Assumed</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength of Concrete</td>
<td>2,500 psi</td>
<td>6,120 – 7,360 psi</td>
</tr>
<tr>
<td>Yield Strength of Steel (billet or axle)</td>
<td>33 ksi</td>
<td>72 ksi</td>
</tr>
</tbody>
</table>

- Available loading of 50 psf for the complete green roof system was determined (used assumed values)
- Additional snow load of 30 psf
- Staging of materials prohibited on roof
Fort Reno Reservoir Green Roof Design Considerations

<table>
<thead>
<tr>
<th>Design Consideration</th>
<th>Concern</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Loading</td>
<td>• Integrity of the existing concrete slab (potential for leakage)</td>
<td>• Structural integrity assessed</td>
</tr>
<tr>
<td></td>
<td>• Compressive strength of concrete roof slab</td>
<td>• Concrete and steel testing performed to ensure structural roof capacity</td>
</tr>
<tr>
<td></td>
<td>• Tensile strength of the structural steel reinforcing in the roof slab</td>
<td></td>
</tr>
<tr>
<td>Safety of Drinking Water Supply</td>
<td>• Protection of the potable water stored within the reservoir</td>
<td>• Green roof designed with three waterproofing layers</td>
</tr>
<tr>
<td></td>
<td>• Perception of constructing a green roof over a potable water reservoir</td>
<td>• Leak detection system designed as part of green roof system</td>
</tr>
<tr>
<td></td>
<td>• Presence of contaminants in the concrete and built-up roofing system</td>
<td>• Environmental sampling performed on existing roof material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reservoir removed from service during construction</td>
</tr>
</tbody>
</table>
Fort Reno Reservoir Green Roof Design and Construction

- 42,500 square feet
- Extensive: 4 to 6-inch depth
- “Mounding” design
- Planted with sedums, succulents, grasses and perennials
- Access hatches and ventilation houses not impacted
- Paver paths provided for accessibility and maintenance

Green Roof Plantings
- 4”-6” Soil Media
- Capillary fabric and drainage aggregate
- Root barrier
- Mounding insulation
- Thermoplastic Waterproofing Membrane
- Continuous Leak Detection
- Mod-Bit membrane
- Tapered insulation and protection board
- Vapor barrier
- Concrete slab roof
- Reservoir wall

Demo of Existing Waterproofing
Fort Reno Reservoir Green Roof Design and Construction

- 42,500 square feet
- Extensive: 4 to 6-inch depth
- “Mounding” design
- Planted with sedums, succulents, grasses and perennials
- Access hatches and ventilation houses not impacted
- Paver paths provided for accessibility and maintenance
Fort Reno Reservoir Green Roof Design and Construction

- 42,500 square feet
- Extensive: 4 to 6-inch depth
- “Mounding” design
- Planted with sedums, succulents, grasses and perennials
- Access hatches and ventilation houses not impacted
- Paver paths provided for accessibility and maintenance
Fort Reno Reservoir Green Roof Design and Construction

Planting Plan by Zones Based on Mounding Insulation Heights

Sedum Adjacent to Paver Walkway

Perennials in Bloom During Summer 2014
Pre- and Post-Construction Monitoring

- Pre-Construction Monitoring
 - Rain gages and flow meters installed to document pre-construction runoff

- Post-Construction Monitoring (underway)
 - Rain gages and flow meters in place to document post-construction runoff
 - Monitoring to date indicates 90% reduction in runoff volume compared to pre-construction
Post-Construction Maintenance

- Contractor performing post-construction maintenance for five years at all facilities
- Green roof maintenance includes:
 - Weeding
 - Annual soil media tests (with fertilization as required)
 - Supplemental plantings (as required)
 - 90% coverage required by end of third growing season
 - Inspecting roof drains, pavers, other roof components, etc.
 - Pest management (as required)
 - Irrigation (temporary during plant establishment)
Green Jobs

- 2014 Green Roof Maintenance Pilot Program
 - Green Roof Focus
 - Program began in summer 2014
 - Recruited 10 underemployed candidates from soft skills training programs (Sasha Bruce Youthwork, Jubilee Jobs, and AFL-CIO)
 - 4 in-class technical sessions led by DCG and UDC
 - 4 in-field sessions: DC Water Fort Reno Reservoir green roof and in-field “job shadowing” with Furbish and Capital Greenroofs
 - Online trainee database accessible to local green roof installation and maintenance companies at training completion (forthcoming)

For additional Information visit:
http://www.dcwater.com/giatdcwater
and http://dcgreenworks.org/programs/green-job-training/
Outreach and Education

- Advance STEM outreach and education opportunities with schools:
 - Alice Deal Middle School Collaboration
 - Earth Echo Hangout
 - Site tours with students

Video Launching Green Infrastructure Design Challenge

Alice Deal Middle School Students

Wilson High School Tour at Fort Reno Reservoir
DC Clean Rivers Project: Green Infrastructure Next Steps

$60 M of Green Infrastructure in Piney Branch

$30 M of Green Infrastructure in CSO 027, 028 and 029

Separate CSO 025 and 026 ($10 M)
Questions?

Bethany Bezak, PE, LEED AP
Green Infrastructure Manager

DC Water
DC Clean Rivers Project
Email: Bethany.Bezak@dcwater.com
Phone: 202-787-4466

Fort Reno Green Roof
Ribbon Cutting Ceremony