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Blue Plains AWTP 

• 370 mgd (AA) to 518 mgd (Max Day) 

• TN <3 mg/l   &  TP < 0.18 mg/l  

• 12◦C winter monthly average 



Challenges Blue Plains Washington, D.C. 

• Growth   

• More Stringent Regulations – Now and in the Future 

• Eliminate CSOs (370 – 1076 mgd and higher),  

• Nutrients (TN<3 & TP<0.18),  

• Class A Biosolids (pathogen re-growth / reactivation)  

• Future – PCBs, EDCs, secondary treatment for CSO by-pass 

• Space constraints  

• Aging infrastructure 

• Urban environment –                                                                                                                    

visual impact, odour, noise 

• Sustainability Vision 

• Energy Neutrality 

• Resource Recovery – Energy,                                                                                         

Biosolids, Nutrients, Water 

• Cost – long term rate impacts 

 

D
O

 m
o
re

 
IN

 le
s
s
 

W
IT

H
 le

s
s
 



 

34% of 

Power 

Cost 



Conventional Intensification 



Disruptive technologies 
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Mechanisms 
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Reactors 

Clarifiers 

Lab Station 

Autosampler 

The pilot WWTP is consisting 

of 3 major components: 

 

1. Four reactors (R1-R4) 

 

2. Three Clarifiers (C1-C3) 

 

3. One RAS tank 

 

Influent: CEPT Effluent (West 

side, Blue Plains AWTP) 

Parameter Reactor Clarifier 

Diameter 10 in 12 in 

Depth 15 ft 12 ft 

Volume 227 L 306 L 
Mixing and aeration: 

1. Fine bubble 

2. Coarse bubble 

Experimental setup 
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Experimental setup 

Parameter Unit Pilot WEST (1 reactor in operation) 

Total reactor 

volume 

m3 0.220 or 2*0.220 23,000 

Clarifier volume m3 0.306 79,000 

SOR m3/m2/h 1.9 0.8 

Qin m3/d 6.3 450,000 

Recycle ratio % 53-65 >80 

Constant process setting: 

Controlled parameters: aeration (mixing or to reach certain min. DO)  

 + waste flow rate 

 

Non-controlled parameters: influent characteristics, temperature 
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Carbon balance 

• Increased carbon redirection with 

decrease in SRT 

• Loss of bioflocculation at low 

SRT 

• Minimum oxidation = 30% 

• Increased carbon redirection with 

decrease in SRT 

• Improved bioflocculation at 

similar low aerSRT as CSTR 

• Minimum oxidation = 25% 

• Loss of 

bioflocculation 

under similar 

operation condition 

as 1.7d SRT CS 
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Total SRT: 

- Relationship more or less similar 

- Shift to the left for CS (due to anoxic zoning) 

- Higher theoretical C-redirection achievable for CS: 60 vs 40% 

 

Aerobic SRT: 

- More mechanistic relationship 

- CS increases C-redirection more significantly with change in aerSRT (because 

bioflocculation control is linked to aerobic SRT in CS) 

SRT vs configuration 
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CS vs PF 

 



Settleability 

CS 1.7 d PF 0.32 d CS 0.69 d >1.5 m/h

0.6-1.5 m/h

< 0.6 m/h

Phase SVI30  

 (mL/gTSS) 

CS 1.7d 168  45 

PF 0.4 d 859  356 

CS 0.69 d 582  113 

Phase TOF 
 (mgTSS/L) 

CS 1.7d 156  32 

PF 0.4 d >860 

CS 0.69 d 219  58 

Phase Effluent TSS 
 (mgTSS/L) 

CS 1.7d 20 ± 6 

PF 0.4 d 44 ± 14 

CS 0.69 d 21 ± 4  

Intrinsic 

settling 

classes 

Dense fraction (>1.5 m/h) related to storage mechanisms?? 



Overall pilot conclusions 

1. Understand the impact of SRT on C redirection and 

C capture  
(SRT control based on TSS) 

– C-redirection increases with decreased aerSRT (linear correlation up to 

certain point) 

– Bioflocculation determines C-capture 

2. Determine the best operational configuration to 

achieve high C capture efficiency 
– CS (RAS aeration + feast at low DO) is key to increase bioflocculation 

– Switch from stabilizer to contactor: increase EPS production, storage, sorption 
• EPS production and storage: dependent on starvation period in stabilizer 

• Sorption: depends on fresh EPS, available sorption spots 

 
CS CAS PF 



Questions??? 

Ahmed.al-Omari@dcwater.com 

Haydee.declippeleir@dcwater.com 

mailto:Ahmed.al-Omari@dcwater.com
mailto:Ahmed.al-Omari@dcwater.com
mailto:Ahmed.al-Omari@dcwater.com
mailto:Haydee.declippeleir@dcwater.com


Influent characteristics 

OHO fraction in influent: 0.5 - 2 % of influent COD  

 

Inert sCOD: ~ 20 mg COD/L (plant effluent), pilot minimum 35 mg COD/L 
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SRT vs configuration 
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Carbon balance 

• Increased carbon redirection with 

decrease in SRT 

• Loss of bioflocculation at low 

SRT 

• Minimum oxidation = 30% 

• Increased carbon redirection with 

decrease in SRT 

• Improved bioflocculation at 

similar low aerSRT as CSTR 

• Minimum oxidation = 25% 

• Loss of 

bioflocculation 

under similar 

operation condition 

as 1.7d SRT CS 
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