The Activated Iron Technology: A New Chemical Water Treatment Platform

Tian C. ZHANG, PhD

Civil Engineering University of Nebraska

Yongheng HUANG, PhD

Biological and Agricultural Engineering Texas A&M University Texas A&M AgriLife Research

April 14, 2016

ATEXAS A&M GRILIFE RESEARCH

Overview

- Activated Iron vs. Traditional Zero-Valent Iron
 - ZVI (or Fe⁰) chemistry
 - Potential and obstacles: passivation issues
 - Our solution to overcome passivation
 - Lab mechanistic, kinetics, and treatability studies
- Collaborations with industrial partners
 - Pilot (1-2 gpm) tests (2009-2015)
 - Pre-commercial scale demonstrations
 - Pironox[™] Advanced Reactive Media System (Evoqua)
 - 25 gpm (136 m³/d) at a power plant
 - 15 gpm (82 m³/d) at a refinery

ZVI-Based Permeable Reactive Barrier

- ZVI as reactive media for environ. remediation
 - inexpensive, widely available
 - versatile
- Became a hot research topic since early 1990s
 - many successes in groundwater remediation

How Fe⁰ Removes Contaminants?

- Redox reaction
 - Fe⁰ (or derivative Fe(II) or H•): e⁻ source
 - Contaminants as oxidizing agents
 - Nonmetal Oxyanions: NO3⁻, NO2⁻, BrO3⁻, IO3⁻
 - Metal/Metalloids Oxyanions: SeO₄²⁻, MoO₄²⁻, CrO₄⁻, VO₃⁻
 - Cationic metals: Cu²⁺, Hg²⁺
 - Organic: TCE, TNT, RDX
- Immobilized through surface adsorption on FeOx produced from iron corrosion
 - Heavy metals: As
 - Radionuclides: U

ZVI Application: Major Challenges

- How to maintain iron reactivity in aquatic environments?
 - Iron grains rust, form iron oxide coatings, and lose reactivity (become passivated)
- No good solution
 - Acidic pH & regular backwash?
 - Mechanical stripping: sonication?
 - Nano-scale ZVI?

Mechanistic and Kinetics Studies

- Nitrate reduction by Fe⁰
- Diagnose a key test Fe⁰/Nitrate with init. pH = 2.3
- Nitrate removal in three stages
 - Stage 1: Acidic cond.
 - Stage 2: Transition
 - Stage 3: Neutral cond.
- Complex mechanisms

Findings from Mechanistic and Kinetics Studies

- Passivation of Fe⁰ may be caused by ferric oxides or amorphous ferrous (oxyhydr)oxides
 - Formed under most natural or engineered aquatic environments
- Magnetite (Fe₃O₄) coating on Fe⁰ can maintain high Fe⁰ reactivity
- Provide external Fe²⁺ to facilitate transformation of passive ferric oxide coating to a reactive magnetite layer
 - Fe⁰ reactivity be sustained
- Propose a semiconducting corrosion model (2000)

Two-layer Semiconducting Corrosion Model (2000)

Mechanism: semiconducting corrosion

Fe²⁺/Fe₃O₄ Mechanism

- The fate of Fe²⁺
 - Aq. Fe²⁺ \rightarrow S.B. Fe²⁺ \rightarrow Structural Fe(II)/Fe(III)
- Fe²⁺ is not the main e⁻ source, Fe⁰ is.
- Formation of magnetite triggered rapid redox reaction

Rationale/Hypotheses

- Fe₃O₄ (or Fe^{II}Fe^{III}₂O₄) has a metallic-like e⁻ conductivity
- With nitrate, the outer layer of magnetite may be further oxidized to maghemite (γ-Fe₂O₃)
- Maghemite as e⁻ transfer barrier stops the reaction
- Surface-bound Fe²⁺ converts maghemite to magnetite

Heavy Metals in Industrial Wastewater

- Trace metals
 - Se, Hg, As, Cr, V, Cu, Zn, Pb, U, Tl
 - flue-gas desulfurization (FGD) wastewater
 - refinery stripped sour wastewater
 - mining wastewater

New Regulations

- Effluent Limitations
 Guidelines by EPA (2015)
 - Se < 12 ppb
 - Hg < 0.356 ppb
 - As < 8 ppb
- State/Local Reg.

Periodic Table																		
2	³ Li	⁴ Be		of the Elements								5 B	°C	7 N	[®] 0	9 F	¹⁰ Ne	
3	¹¹ Na	¹² Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB		¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	Ca	²¹ Sc	22 Ti		Cr	25 Mn	Fe	27 Co	Ni	Cu	Zn	Ga	Ge	As	Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	Ag	<mark>ک</mark>	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	⁷² Hf	73 Ta		75 Re	76 Os	77 Ir	78 Pt	79 Au	Hg	Ē	Pb	83 Bi	⁸⁴ Po	At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹ +Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	¹⁰⁸ Hs	¹⁰⁹ Mt	110 110	111 111	¹¹² 112	¹¹³ 113					
*	Lanth Serie:	anide s	58 Ce	⁵⁹ Pr	⁶⁰ Nd	Pm	Sm	Eu	Gd	⁶⁵ Tb	66 Dy	67 Ho	Er	⁶⁹ Tm	70 Yb	Lu		
+	Actini Serie	de s	⁹⁰ Th	⁹¹ Pa	92 U	93 Np	⁹⁴ Pu	95 Am	⁹⁶ Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr		

ZVI for Wastewater Treatment

- Focus on removing pollutants/impurities from impaired water
 - Industrial wastewaters: Power, Mining, Refinery, etc.
 - Pollutants: Se, As, Cr, Hg, etc.
- Develop the hybrid ZVI/Fe₃O₄/Fe(II) technology
 - Employ Fe²⁺-Fe₃O₄ mechanism to prevent or reverse ZVI passivation
 - Discover synergistic effect of ZVI and discrete Fe₃O₄
 - Use fluidized bed reactor to maintain high reactive solid conc.
 - Create a hybrid reactive system, produced highly reactive secondary species

Activated Iron Technology

- Activated Iron Technology utilizes a series of chemical reactions and mechanisms that in tandem can overcome the passivation of ZVI
 - Increase reaction rate greater than 99% removal efficiency
 - Reduce ZVI consumption lower cost
 - Reduce solid waste production lower cost

$sf.rx.ZVI + Fe_3O_4 + Fe(II) = Activated Iron Media$

- A novel high-performance reactor design
- Robust and flexible treatment process configuration

Metallic Iron Powder

Activated Iron Media { sf.r.ZVI + FeOx + Fe(II) }

 \rightarrow

Settling after: 1 min 3 min

The mature reactive solids settle rapidly.

Activated Iron Media

Fluidized Activated Irons

Settled Activated Irons

Fe⁰

Activated Iron Media vs. ZVI: a MoO₄²⁻ example

Test conditions:

- 1. 100 g/L ZVI
- 2. 100 g/L ZVI + 1 mM Fe²⁺
- 3. hZVI: 98 g/L ZVI + 2 g/L Fe₃O₄ + 1 mM Fe²⁺
- 4. hZVI: 96 g/L ZVI + 4 g/L Fe₃O₄ + 1 mM Fe²⁺

Activated Iron Technology

A chemical treatment platform that uses reactive power of rapid iron corrosion process to remove various contaminants/ impurities from water

Applications:

- Remove Se, Hg, and As from impaired water
- Remove dissolved silica for many industrial water supplies

Activated Iron Water Treatment System

Field Demonstrations

- Bench-top demonstration at Plant A (October 2009)
- Treating Flue-Gas-Desulfurization Wastewater

Pilot Demo at Power Plants (2011-2015)

Treated 1-2 gpm or 5-10 m³/d

Activated Iron treatment performance

Table: Removal of contaminants at *Plant A* test (2009)

Pollutants	Influent (as total metal)	Effluent	Removal Efficiency	
Selenium	1910 to 2950 ppb	Total Se < 7 ppb	> 99.8%	
Mercury	22 to 61 ppb	Total Hg < 0.005 ppb	> 99.99%	
Arsenic	6.4 to 10.6 ppb	Total As < 0.3 ppb	> 97%	
Cadmium	45 to 73 ppb	Total Cd < 0.3 ppb	> 99%	
Chromium	25 to 55 ppb	Total Cr < 0.6 ppb	> 98%	
Nickel	231 to 266 ppb	Total Ni < 7.0 ppb	> 97%	
Lead	3.3 ppb	Total Pb < 0.08 ppb	> 97%	
Zinc	901 to 1350 ppb	Total Zn < 2.0 ppb	> 99.8%	
Vanadium	17 to 23 ppb	Total V < 0.15 ppb	> 99.8%	
Nitrate	30 ppm Nitrate-N	Nitrate-N < 0.2 ppm	> 99%	

Activated Iron (TAMU Tech) vs. Traditional ZVI (EPRI Report 1017956)

	Traditional ZVI (EPRI 1017956)	Activated Iron (Texas A&M)					
Performance							
Se in treated effluent	ca.150 ppb	< 10 ppb					
Hg in treated effluent	ca. 100 ppt	< 10 ppt					
Reagent Usage							
ZVI (\$1,200/ton)	2 g/L	0.1-0.3 g/L					
Acid (35% HCI)	15 g/L	none					
Lime (Ca(OH) ₂)	2.3 g/L	< 0.1 g/L					
Fe(II) salt		ca. 0.05-0.2 g/L					
Solid Waste Production							
	ca.10 g/L	< 1 g/L					

TCLP test result

Solid waste: highly stable minerals, non-hazardous waste – all samples pass USEPA TCLP test (Toxicity Characteristic Leaching Procedure)

			Results			
Metal	Limits	Sample A (April 2011)	Sample B (June 2011)	Sample C (May 2011)	Units	Method
Silver	5	<0.012	<0.012	<0.012	mg/L	EPA 1311/6010
Arsenic	5	<0.02	0.025	<0.02	mg/L	EPA 1311/6010
Barium	100	0.169	0.109	2.02	mg/L	EPA 1311/6010
Cadmium	1	<0.005	<0.005	<0.005	mg/L	EPA 1311/6010
Chromium	5	<0.003	<0.003	0.0047	mg/L	EPA 1311/6010
Mercury	0.2	<0.00175	<0.00175	<0.00175	mg/L	EPA 1311/7470
Lead	5	<0.03	<0.03	0.196	mg/L	EPA 1311/6010
Selenium	1	<0.036	<0.036	<0.036	mg/L	EPA 1311/6010

Findings from Lab and Field Tests

• The Activated Iron Technology is effective for treating:

Se, Hg, U, Tl, As, Cr, Cd, V, Cu, Zn, Pb, Ni, Mo

- A single-stage system with HRT< 1 hr can ensure total Hg < 10 ng/L (ppt), and Cr, As, Pb, and Cd < 1 μg/L (ppb)
- For treating mining wastewater, a single-stage system with HRT=0.5 h is adequate.
- For a refinery stripped sour water, a two-stage system with HRT=2 hr is adequate.
- For a typical FGD wastewater, a 3-stage system with HRT=4 -12 hr is adequate for total Se < 10 ppb.

Robustness

- The Activated Iron Technology remains effective under complex water matrix. Compatible with:
 - High TDS up to 70,000 mg/L
 - Cl⁻ up to 20,000 mg/L, SO_4^{2-} up to 20,000 mg/L
 - Ca²⁺, Mg²⁺, Na⁺, K⁺, Fe²⁺, Mn²⁺
 - Borate, phosphate, nitrate, bromate, iodate, periodate, carbonate, fluoride, bromide, iodide, sulfide, persulfate
 - Dissolved silica up to 300 mg/L
 - phenol, acetate, glucose, sugar
 - Can remove SeCN⁻

Advantages of the Activated Iron Process

- **Simplicity:** Requires no complicated and expensive pretreatments or post-treatments. Can be added to the existing wastewater systems
- Versatility and Robustness: A single process removes most concern metals and metalloids from industrial waste streams
- High removal efficiency: Se and Hg, below restricted limits
- Low O&M cost: Uses common, inexpensive, nontoxic substances (zero-valent iron)
- Limited sludge production: Operates at near-neutral pH, which reduces chemical consumption and limits sludge production

Pre-Commercial Scale Demonstrations (by Evoqua Water Technologies LLC)

- Treating FGD Wastewater
- At the Water Research Center (DoE, EPRI, SoCo, SRI), 2014-present
- 25 gpm (130 m³/d)
- Fully scalable to a larger system
- Full process development

Plant B (25gpm) – Metals Removal, 4 Hr HRT

Pre-commercial Scale Demonstration

- At a Refinery Facility in Colorado
- 5-15 gpm (27-84 m³/d) demo (vs. 200 gpm in full scale)
- Treating Stripped Sour Water
- Main Target: Selenium
 - Reduce ~500 ppb Se to < 4.7 ppb
 - vs. Best previous results > 40 ppb
- 15 months demonstration
 - Meet the target Selenium limit
 - Actual Q: 15 gpm (84 m³/d)

Implications

- Many full-scale commercial applications being planned in several industries
- New benchmarks for future regulations? e.g. Hg<10 ppt, As<1 ppb?

Future work

- Further expand ZVI research in both depth and breadth
- Explore other potentials of the activated iron chemistry
- Continue to support commercialization efforts

Thanks to

- USEPA's Hazard. Substance Res. Center
- USEPA/EPSCoR program
- Nebraska Research Initiative
- Electric Power Res. Institute (Palo Alto, CA)
- Southern Company (Atlanta, GA)
- Siemens Industry Inc.
- Evoqua Water Technologies LLC.

for funding this research!

Thanks to our team members

- ZAWAIDEH, Laura
- ZENG, Hui
- TANG, Ci-Lai
- LIN, Sin-Hong

- PEDDI, Phani K.
- WANG, Xiao
- LIN, Xu
- MORAR, Nilesh

Thanks to our industrial collaborators

- Paul Chu (EPRI)
- Jason Teng (Southern Company)

Questions?