

OCCURRENCE OF NATURAL DISASTERS

• US has been ranked No.2 among the hardest hit countries by natural disasters

No. of disaster occurrence in 2017

Disaster types in 2017

Below and Wallemacq (2018). Annual Disaster Statistical Review 2017

ECONOMIC LOSS

• Americas had the most economic damage from natural disasters in 2017.

Top 5 economic loss

7	USA	Hurricane Harvey	95 billion
	USA & Caribbean	Hurricane Irma	80.7 billion
	USA & Caribbean	Hurricane Maria	69.7 billion
10	USA	Wildfire	13 billion
	China, Vietnam, Macao & Hong Kong	Typhoon Hato	7.1 billion

Economic loss by continent (total loss: \$334 billions in 2017)

IN THE AFTERMATH OF DISASTERS

Basic demands

- Food
- Water
- Medicine
- • •

Water for:

- Drinking
- Food preparation
- Domestic hygiene

At least 15 L/person day

3 HOUSEHOLD EWTs (FEMA)

- Boiling
- Chlorination
- Distillation

• Are they feasible and technically effective ?

Food and Water in an Emergency

WATER CRISIS IN THE AFTERMATH OF HURRICANE MARIA IN PUERTO RICO

- Hurricane Maria hit Puerto Rico (09/20/17)
- Category 4
- 50% more residents (3.6 million) had no water immediately

WATER ACCESS IN THE AFTERMATH OF HURRICANE MARIA IN PUERTO RICO Figure 5

Half Say They Had Problems Getting Enough Water To Drink After The Storm, Some Drank From Natural Sources

AMONG PUERTO RICO RESIDENTS: Percent who say, since Hurricane Maria, they have experienced each of the following:

WATER IN PR... AFTER HURRICANE MARIA

SOURCE: Washington Post/Kaiser Family Foundation Survey of Puerto Rico Residents (July 3-August 29, 2018)

CHALLENGES FROM PR IN THE AFTERMATH OF HURRICANE MARIA Power supplies... Road damage

From Time.com

Photo from NOAA

CHALLENGES FROM PR IN THE AFTERMATH OF HURRICANE MARIA **Fuel shortage & curfew**

High temp

Photo from WNPR.org

https://www.wnpr.org/post/disaster-more-dire-day-puerto-rico-after-hurricane-maria

From timeanddate.com

In storm-ravaged Puerto Rico, drinking water in short supply

raise fears of health crisis six ria

lov. 2, 2017 | Updated 5:08 p.m. ET Nov. 2, 2017

By Dave Graham and Robin Respaut, Reuters Like 0 September 27, 2017

AN JUAN, Puerto Rico (Reuters) -A week after Hurricane Maria slammed into Puerto Rico, most of

rto Rico, on Oct. 14, 2017, nearly a month after Hurricane Maria made landfall. (Photo: Ramon

Puerto Rico collect water from a spring — more than two weeks after Hurricane Maria hit the island. | Photo by Images

CHALLENGES FOR EXISTING EWTs

- Multiple pollutants, rather than pathogens only, may be present;
- No or limited water quality monitoring and measurements are available;
- No or minimal energy (e.g. electricity, natural gas, and gasoline) is available;
- Easy operation, simple maintenance.

Ferrate(VI) (FeO₄²⁻) FOR WATER TREATMENT

OBJECTIVE

 A holistic approach was adopted to develop and design innovative EWTs with ferrate(VI).

RESIDUAL METALS & METALLOIDS

Cui et al. (2018)

RESIDUAL TURBIDITY, EC, & UV₂₅₄ ABS.

Initial turbidity: 11.88 NTU Initial EC: 310 μ s/cm Initial UV254 Abs. : 0.247 cm⁻¹

Cui et al. (2018)

PARTICLES & FE(VI) PARTICLES IN SIMULATED NATURAL WATER

Lv et al. (2018)

Kaolin particles in water

Kaolin Particles incorporated into Fe(VI) resultant particles

FlowCAM IMAGES OF Fe(VI) PARTICLE CAPTURING ALGAL CELLS

Unpublished data

DISTRIBUTIONS OF PARTICULATE, COLLOIDAL, & SOLUBLE ELEMENTS AFTER Fe(VI) TREATMENT

DESIGN FOR HOUSEHOLD Fe(VI) EWT: PRE-PACKED TEABAG

Unpublished images

COST

- \$0.14/day for a 4-person family;
- Compared with other commercial EWT products,

	NaClO	NaDCC	Flocculant/ disinfectant	Ferrate(VI)
Cost (\$x10 ⁻² /10 L)	0.33	0.75	3.5	2.3

CONCLUSIONS

- One-step treatment;
- Effective and simultaneous removals of chemical and microbial contaminants;
- No production of DBPs;
- Affordable costs;
- Simple operation;
- Non-hazardous final products (iron sludge) (passing TCLP tests).
- Fe(VI) enables a new EWT design in the aftermath of natural disasters.

IMPLICATIONS & EFFORTS NEVER END...

- Straightforward and immediate benefits for disaster-affected populations;
- The resulted rapid disaster relief can save lives and minimize economic loss from disasters;
- Fe(VI) treatment can be readily applied can be readily applied at other scenarios such as <u>industrial wastewater treatment</u> (e.g. metal removal from flue-gas desulfurization (FGD) wastewater), <u>small rural or island water</u> <u>supply systems</u>, <u>military bases</u>, <u>scientific expedition</u>, and <u>site remediation</u>.

OUR RECENT PUBLICATIONS ON Fe(VI) WATER TREATMENT & REUSE - UNIT OF A CONTROL OF A

- Deng, Y., C. Jung, Y. Liang, N. Goodey, T. Waite (2018) "Ferrate(VI) Decomposition in Water in the Presence of Natural Organic Matter (NOM)," *Chemical Engineering Journal*, 334, 2335-2342.
- Lv, D., H. Zhang, L. Zheng, Y. Deng (2018) "Coagulation of Colloidal Particles with Ferrate(VI)," Environmental Science: Water Research & Technology, 4, 701-710.
- Song, Y., Y. Deng, C. Jung (2016) "Mitigation and Degradation of Natural Organic Matter (NOM) during Ferrate(VI) Application for Drinking Water Treatment," *Chemosphere*, 146, 145-153.
- Li, N., Y. Deng, D. Sarkar (2017) Ferrate(VI) Reaction With Effluent Organic Matter (EfOM) in Secondary Effluent for Water Reuse, in Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, by Virender Sharma (Editor), ACS Publications.
- Huang, X., Y. Deng, S. Liu, Y. Song, N. Li, J. Zhou (2016) "Formation of Bromate during Ferrate (VI) Oxidation of Bromide in Water," Chemosphere, 155, 528-533.
- Zheng, L., Y. Deng (2016) "Settleability and Surface Characteristics of Ferrate(VI)-Induced Particles in Advanced Wastewater Treatment," Water Research, 93, 172-178.
- Deng, Y., M. Wu, L. Zheng, H. Zhang, Acosta, H., Hsu, T. (2017) "Addressing Harmful Algal Blooms (HABs) Impacts with Ferrate(VI): Simultaneous Removal of Algal Cells and Toxins for

ACKNOWLEDGEMENT

- Junkui Cui (PhD candidate)
- Lei Zheng (PhD candidate)
- Chanil Jung (Postdoc)

ACKNOWLEDGEMENT

MONTCLAIR STATE UNIVERSITY

PSEG INSTITUTE FOR SUSTAINABILITY STUDIES

THANKS ...

NATURAL DISASTERS: HUMAN IMPACTS (2017 VS. 2007-2016) • Total affected (96 millions in 2017) • Total death (9,697 in 2017)

Below and Wallemacq (2018). Annual Disaster Statistical Review (2017.

DISTRIBUTION OF NON-SETTABLE FERRATE(VI) RESULTANT PARTICLES.

Cui et al. (2018)

DISTRIBUTIONS OF PARTICULATE, COLLOIDAL, & SOLUBLE ELEMENTS AFTER Fe(VI) TREATMENT (Cont.)

DISTRIBUTIONS OF PARTICULATE, COLLOIDAL, & SOLUBLE ELEMENTS AFTER Fe(VI) TREATMENT (Cont.) Zn Cu

Cui *et al.* (2018)