

EPA's National Enforcement Initiative for Energy Extraction Sector Compliance with Environmental Laws

AAEE Workshop/NJWEA-WEF Conference | May 9, 2011

Andrew Stewart, Branch Chief Special Litigation and Projects Division Office of Civil Enforcement Stewart.Andrew@EPA.gov

- Shale gas and the environment
- Energy Extraction Enforcement Initiative
- Other aspects of EPA's approach
 - -Scientific study
 - Regulation and policy development
 - Best design and management practices
- Marcellus Shale Activities

US Shale Gas Extraction

Advances in hydraulic fracturing and horizontal drilling have opened new areas for oil and gas development.

Source: Energy Information Administration based on data from various published studies Updated: March 10, 2010

US Shale Gas Extraction

- According to 2009 US Dept of Energy data:
 - US natural gas proved reserves: 8.045 Tm³
 - US "technically recoverable" shale gas: 23.43 Tm³

Shale Gas and the Environment

- Natural gas is *relatively clean burning*
 - About 53 kg of CO₂ for every million Btu equivalent of natural gas

versus

 About 91 kg of CO₂ for every million Btu of coal, and 73 kg of CO₂ for every million Btu of fuel oil

- But CH₄ is a **potent greenhouse gas**
 - About 25 times more potent than CO₂
 - Some estimates suggest a factor of 72

EPA Energy Extraction Enforcement Initiative

March 2010 EPA announced new enforcement initiative for energy extraction

First focus area is **onshore gas production**

Two major goals:

- Take action where violations cause air or water impacts that threaten human health
- Secure company-wide relief

Many cases brought to date

(including air and drinking water cases), more under investigation

Shale Gas and the Environment

- Natural gas exploration, drilling and production have many environmental impacts
 - Site selection and preparation
 - Staging, transport, water withdrawal and chemical storage
 - Drilling
 - Well completion
 - Air emissions
 - Wastewater handling
 - Well abandonment and plugging
- Advances in drilling and production technologies have positive and negative impacts
- Strict safety regulations and standards are required for natural gas

Shale Gas and the Environment – Site Selection and Preparation

Gas well development in Marcellus Shale in western Pennsylvania.

Gas well field in Green River Basin, near Pinedale, Wyoming.

Shale Gas and the Environment – Site Selection and Preparation

- Avoid sensitive environments, such as surface waters, wetlands and source water protection areas
- Install physical controls, such as silt fencing, sediment traps and basins, and expanded riparian areas. Use storm water management plan practices
- Minimize surface water and air impacts from access roads, staging areas, pits, ponds, impoundments, tanks and other equipment
- Ensure appropriate confining layer between target formation and aquifers

Shale Gas and the Environment – Staging, Transport, H₂0 and Chemical Storage

- Spill and runoff prevention
- Sample water wells in vicinity to determine baseline water quality
- Plan for proper wastewater disposal areas with adequate liners and freeboard
- Consider use of LNG versus diesel trucks and equipment
- Work with local agencies and citizens to determine appropriate water sources

Hydraulic fracturing staging near Fort Worth, Texas.

Shale Gas and the Environment – Drilling and Well Completion

- Prevention of methane and other contaminant migration
- Adequate well construction and pressure control to prevent explosions
- Limit chemical use to only those required by specific geology

Shale Gas and the Environment – Drilling and Well Completion

- Loss of methane and VOCs to atmosphere
 - "Green completions" capture product, while reducing air emissions
 - Use of flares where "green completions" not possible
- Well integrity, monitoring and modeling critical to ensuring fracture in target zone
- Spill prevention
- Occupational hazards

Shale Gas and the Environment – Air Emissions

- Occur throughout lifecycle of well development and production
 - Poses environmental and occupational risks
- Use of flares, no-bleed pneumatics and other control technology to limit emissions
 - Some technologies have rapid return on investment
- Use of remote monitoring to determine and react quickly if something amiss

Forward Looking Infrared (FLIR) image of condensate tank.

Shale Gas and the Environment – Wastewater Handling

- Wastewater contains chlorides, heavy metals, frack chemicals and radioactive material
- Spills may be lethal to aquatic and terrestrial organisms
- Difficult to treat in typical wastewater plant – ultimate disposal in deep injection wells may be necessary
- Important to maximize recycling for additional fracking or other uses

Truck hauling gas wastewater from Marcellus Shale.

Shale Gas and the Environment – Well Abandonment & Plugging

- Abandoned wells can leak or provide conduits for migration of contaminants
- Utilize proper materials and techniques to ensure proper seal
- Consider institutional controls to prevent access and monitor seals

Leaking 75- year- old, abandoned gas well in NY state.

EPA's Approach on Shale Gas – Scientific Study

- US Congress asked EPA to study relationship between hydraulic fracturing and drinking water resources
- Peer-reviewed study currently underway, with preliminary results due in late 2012
- Lifecycle approach, use of case studies, with preliminary focus on sources and pathways of potential impacts
- Stakeholder involvement throughout process

EPA Approach on Shale Gas – Best Design and Management Practices

- EPA is developing Best Design and Management Practices (BDMPs) to minimize adverse impacts to public health and the environment from shale gas production
- Part of EPA's role to carry out President Obama's *Blueprint for a Secure Energy Future* (March 2011)
- Rely on widely-accepted federal, state and industry practices from across the United States
- Recognition that certain BDMPs may not be applicable in every location, while other BDMPs may be compulsory

Shale Gas Development in Mid-Atlantic States

- Rapid increase in development activity in one of world's largest gas plays
- Densely populated areas
- Hydrologic conditions

- Formation containing uranium
- Produced water rich in total dissolved solids

Flowback and Produced Water Treatment & Disposal

- Program Oversight
 - EPA requests for better characterization of discharges & impacts
 - PADEP requests to operators for monitoring at public drinking water systems and WWTP discharge points
 - Determine if discharge permit modifications are needed

Flowback and Produced Water Treatment & Disposal

- Underground Injection Control permits for waste disposal
 - Issued by authorized states with EPA oversight & technical assistance
 - Issued by EPA in "direct implementation" states
 - Inspection of disposal of shale gas development waste via wells
- Emergency and Accident
 Prevention and Response

Marcellus Shale Approaches

- Underground Injection Control
 - Unpermitted injection of wastes
 - Injection of wastes not in compliance with permit
- Reporting of releases
 - National Response Center 1-800-424-8802
- Clean Air Act general duty clause

Marcellus Shale Approaches

- Unpermitted discharges (spills) to U.S. waters
- Discharge permits for treatment of oil & gas wastewater
- Pass-through or interference at POTWs
- Construction
 - Road crossings, pipeline crossings, well pads, compressor stations
 - Stream diversions

Conclusion

We must ensure that [energy] production is safe, responsible, and efficient.

President Barack Obama, *Blueprint for a Secure Energy Future*, March 30, 2011 (http://www.whitehouse.gov/sites/default/ files/blueprint_secure_energy_future.pdf)