AAEE Workshop

Marcellus Shale Water Management – An Operator's Viewpoint

May 9, 2011

Requirements

Conventional versus unconventional

Sources

Balancing regulatory considerations with operational flexibility

Treatment, Reuse, and Disposal

Down-hole performance, surface issues, and disposal

Storage

Tanks, pit, impoundments...

Transfer

Reducing truck traffic while ensuring integrity

Requirements

- 4 to 6 million gallons/well
- Pump Rates 70 to 100 bpm
- Reliability/Seasonality
- Quality/Compatibility
- Location/Proximity

Simplified Fluid Design

Slickwater with scale inhibitor and bactericide

Water Quality

Shale permeability Production mechanism Water mobility

Challenge conventional rules of thumb

Parameter	Conventional Limits	Considerations
рН	6.0 to 8.0	Fluid Stability, Scaling
Chlorides	<20,000 mg/L	Fluid Stability
Iron	<20 mg/L	Fluid Stability
Ca, Mg, Ba, SO ₄ , CO ₃ ,	f(P,T,pH) (+/- 350 mg/L)	Scaling
Bacteria Count	<100/100 mg/L	Bacteria Growth
Suspended Solids	<50 mg/L	Skin
Oil & Soluble Organics	<25 mg/L	Fluid Stability

nanodarcy, nD, 1 x 10⁻⁹ D

millidarcy, mD, 1 x 10⁻³ D

Requirements

Water use per million btu of energy:

- Deep shale natural gas
- •Marcellus Shale gas avg
- Nuclear (uranium ready to use in a power plant)
- Conventional oil
- Synfuel-coal gasification
- Coal (delivered power plant)
- •Oil shale
- Tar sands/oil sands
- Fuel ethanol from corn
- Biodiesel from soy

- 0.60-5.80 gallons
- 1 gallon
- 8-14 gallons
- 8-20 gallons
- 11-26 gallons
- 13-32 gallons
- 22-56 gallons
- 27-68 gallons
- 2,510-29,100 gallons (irrigation)
- 14,000-75,000 gallons (irrigation)

Shale gas production uses less water than any other significant energy source Source: U.S. Dept. of Energy

Water Network

Raccoon Valley Sportsman Club Pond PLehman Impoundment (150;000 bbls)

Nancy Stewart Impoundment (270,000 bbls)

Worstell (proposed)

Johnston #1 Impoundment (130,000 bbis

Chartiers Run (CR4) DEP App

McGovern

oss Creek Lake (CC1) DEP Approved 🧟

Hamilton Pond

undment (325,000 bbls)- P

Rush (Proposed)

Best Impoundment (325,000 bbls) Miller (Proposed)

Sugar Camp Run

Bednarski Impoundment (265,000 bbls)

Buffalo Creek 1

Romanetti Farm Pond

ved s. Hewitt

• Wolfdale

Clingerman Impoundment (205,000 bbls)

Carol Baker Pad

Carol Baker Impoundment (325,000 bbls)

19 136 Washington

Zappi Impoundment (98,000 bbis) Buffalo Creek 2

231

Dutch Fork 1

Hewitt (proposed)

Dutch Fork Lake

US Census Bureal aris Reservoir #4

n Day Impoundment (325,000 bbls

AAEE Workshop | May 2011 | 7

©2009 Washington

Google

RANGE RESOURCES

Sources – Surface Water

- PA receives 43" precipitation per year
- 5 million gallons = 1.8 inches of water over the drainage area of 1 well (~100 acres)
- If the productive area of the Marcellus takes 50 years to drill, annual water use over the productive area would be 0.04 inches of water per year (1/10th of 1% of annual rainfall)
- PA consumptively uses ~1.6% of its available water

City	Avg Annual Precip	Avg Snow Annual	Avg # days of Precip	Avg # thunderstorm days	Avg # hail days	Avg # severe thunderstorm watches per year	Avg # tornado watches per year
Allentown	45.17	32.9	125	31	1	1	10
Avoca	37.56	48.7	140	29	1	1	11
Erie	42.77	90.4	165	35	1	1	9
Harrisburg	41.45	34.3	125	31	1	1	11
<u>Philadelphia</u>	42.05	21.1	117	27	1	1	8
Pittsburgh	37.85	43.5	153	35	1	2	12
Williamsport	41.59	41.7	141	34	1	1	10
 Pennsylvania Precipitation Average - 43.02 inches, 21st wettest in the U.S. Pennsylvania Tornado Average - 10.2 per year - 24th most in the U.S. 							

Sources – Surface Water

CONSUMPTIVE USE AND RENEWABLE WATER SUPPLY, BY WATER-RESOURCES REGION

Sources – Surface Water

10.00

-Passby Flow + 2 bpm

2 3 3 - CR4 Calculation

8.00

12.00

R RANGE RESOURCES

Sources – Municipal

Sources – Alternative

TABLE 1 - WATER QUALITY AND QUANTITY

Parameter	Value			
Mine Pool #1	1.9 billion gallons			
Mine Pool #2	1.8 billion gallons			
Average Discharge Flow	935 gpm			
Average pH	6.0			
Average Alkalinity	112 mg/l			
Average Acidity	52 mg/l			
Average Total Iron	100.5 mg/l			
Average Total Manganese	1.1 mg/l			
Average Total Aluminum	0.6 mg/l			
Average Sulfates	762 mg/l			

Parameter	Min		Max	Average	Units	
Flow		80	45,553	1,638	gpm	
рН		2.8	8.6	5		
TSS		2	656	29	ppm	
TDS		144	3,486	1,120	ppm	
Chlorides		1	348	31	ppm	
Sulfate		5	2,800	416	ppm	
Hardness		74	1,559	435	ppm	
Iron (total)		0	238	19	ppm	
Magnesium (total)		2	525	47	ppm	

PA DEP – Orphaned Mine Discharge Project

Parameter	Value	Units
рН	5.0-9.0	
TSS	30	ppm
5-Day BOD	30	mg/l

EPA Secondary Treatment Standard

FYI, Reuse BOD = 49 to 7,175 mg/l

Sources – "Super Sources"

Treatment, Reuse, and Disposal

- 10-30% of frac water flows back to surface after frac; balance is bound in micro fractures in shale
- Water flowed back after frac contains salts and other naturally occurring dissolved minerals present in ancient sea water
- Water is gathered and removed from site by either truck or pipeline
- Management methods during 2011:
 - Recycle
 - Injection wells
 - Advanced treatment facilities

Rapidly Evolving Technology

Recycling

- Recycling technology did not develop in other shale gas plays due to abundant opportunities for disposal by injection into deep rock formations
- Recycling in the Marcellus play has been driven by lack of other disposal options and regulatory framework
- Estimated that 75% of all Marcellus flowback water is currently being recycled
- Technology will continue to improve rapidly

Range Reuses 100% of our Flowback in our SW PA Core Area

Potential Down-hole Issues

Fluid Stability

Bacteria

Scaling

Non-issues as Supported by Well Performance TDS Build-up Concerns

Not an issue because of required dilution

Known Surface Issues...Aesthetics

Solids Bacteria (anaerobic)

Keys to Remediating Surface Issues Solids – Clarification/Filtration Bacteria (anaerobic/SRBs)

> Remove the Food Source Maintain with Aeration

Recycling

Impoundments vs. Tanks

The Goal is Maintenance

- **Double Liner System with Runway**
- **Permanent Fill/Withdrawal Manifold**

- Under-Drain Catch Basin System with Leak Alarm
- **Influent Weir Tank Battery**
- Solids and Condensate Capture

Aeration System Bird Netting Remote Level Monitoring System Security/Privacy Perimeter Fencing

Minimize Trucking

Source water, 800 - 900 trucks per well Flowback, ~180 trucks per well Trucking = \$0.85 - \$0.95 / bbl / hour Proximity is key

Pumping and Pipelines

Temporary Integrity Distance Permanent network

Link super sources to storage locations Noise Mitigation

Water Transfer

- 3rd Party Engineer Develops Test
 - Pipe rating
 - Component ratings
 - Layout
 - Weather conditions
- Separate Testing Firm Executes
- Approximately 8 hours
- Any failure results in re-test
- Scheduled 3-7 days prior to Frac
- Procedure/test for each job

Thank You

724-743-6700

MyRangeResources.com

MarcellusCoalition.org

Pete Miller, P.E., PMP Range Resources - Appalachia, LLC 380 Southpointe Blvd. Canonsburg, PA 15317 Ph: 724-743-5234