Water Management in Unconventional Natural Gas Exploration & Production An Important and Long-Term Challenge

May 2011

Introduction

Massive expansion of shale gas development requires reliable water sources and effective water management

 This multi-faceted challenge requires multi-faceted solutions, and the purpose of this presentation is to explain and emphasize the importance of this fact

My perspective

Presentation Outline

- **1)** Summary of Shale Gas Resource
- 2) Horizontal Drilling and Hydraulic Fracturing
- 3) Water Management / Treatment

Growing Future Global Demand

Global energy demand in 2030 will be about 35% higher than 2005, driven in large part by growth in power generation demand

Source: ExxonMobil Energy Outlook

4

U.S. Reliance On Imports

Source: TrendMacro

CDM

It's Not Going To Get Any Easier (e.g., Chinese Oil Production and Consumption)

We Can All Agree

- Increase U.S. energy efficiency
- Reduce reliance on foreign sources
- Transition to renewable energy as quickly as possible

Where It Gets Sticky

 What do we do in the mean time while renewable energy development is a drop in the bucket compared to our total energy needs?

Blueprint for a Secure Energy Future White House, March 30, 2011

Three Point Plan

- Develop and secure
 America's energy supplies
- Energy reduction
- Innovate clean energy

"Natural gas and oil from shale formations...will play a critical role in domestic energy production in the coming decades."

9

Pertinent Quotes

"We've discovered the equivalent of two Saudi Arabia's in the last two years. The greatest wealth transfer in human history "\$1B / day" takes place everyday and it doesn't have to." - Aubrey McLindon, CEO of Chesapeake Energy

> "One group says natural gas is the solution to America's energy problems and another group says it's our biggest environmental nightmare. Their both right." - Michael Brune, Executive Direction of the Sierra Club

"Given the global demand growth, concerns about nuclear power, constraints on carbon emissions, and current limitations of renewable energy, natural gas is the fuel of no choice." - Société Générale Bank

Shale Revolution Timeline

U.S. Shale Gas Production Has Increased Six-Fold Since 2006

Annual Shale Gas Production¹ (trillion cubic feet per year)

Shale gas has grown to over 15% of U.S. gas production²

11

Shale

Sedimentary rock

- Consolidated clay-sized particles
- Concurrent deposition of organics (algae, plant matter, and animal matter)
- Laminated layers with limited horizontal and extremely limited vertical permeability (hence need for hydraulic fracturing)

Marcellus Shale Outcrop

U.S. Shale and Tight Gas Basins

Source: Energy Information Administration based on data from various published studies.

13

Natural Gas is Efficient and Clean Burning, and It's OURS!

$\sim \frac{1}{2} CO_2$ as coal

- Emits mostly CO₂ and H₂O (very small SO₂ and NOx, no ash)
- Central component of greenhouse gas strategies
- Extensive availability and transmission / distribution network
- Obvious best choice for leveling supply variability of renewable sources of wind and solar
 - Massive U.S. Shale Gas Plays now available due to horizontal drilling and hydraulic fracturing
 - Best available "bridge" fuel for future transition to renewable energy

Shale Gas is Global with Production and Reserves Both Concentrated in North America

Shale Revolution U.S. Dry Gas Supply – History and Projections

trillion cubic feet per day

Imports practically eliminated

Shale gas in 2009 made up 14% of total U.S. natural gas supply. Production of shale gas is expected to continue to increase, and constitute 45% of U.S. total natural gas supply in 2035.

Availability of Shale Gas Has Dramatically Changed U.S. Supply Projections

Source: Wood Mackenzie NAGS

17

CDM

Changing Supply Dynamics NE Shale vs. Traditional Appalachian

Source: Bentek Energy, LLC

CDM

Domestic Shale Production Projections

Natural Gas Supply Trends

Source: Dominion Transmission Inc.

Marcellus Shale and Other Appalachian Formations

500 – 1,500 trillion cubic feet (tcf) in place (50 - 500 tcf recoverable) in the Marcellus.

First gas well in U.S. – 1821, Devonian Shale, Fredonia, NY.

A Trillion Cubic Feet is Enough Gas to:

- Heat 15 million homes for 1 year
- Generate 100 billion kilowatt-hours of electricity
- Fuel 12 million natural gas vehicles for one year
 Marcellus ~ 50 500 x above

Release of Natural Gas from Shale Rock

Source: BNK Petroleum

CDM

HORIZONTAL DRILLING AND HYDRAULIC FRACTURING

Horizontal Drilling

Horizontal laterals ~1.5 to 3 Km long each

Sec.

Multiple stages hydraulically fracture stimulated

Source: BNK Petroleum

CDM

Horizontal Drilling

- Six to eight wells at a single site versus approximately 16 separate wells for typical vertical well spacing
- ~1/10 surface impact
- 2,000 6,000 feet of formation exposure per well versus only formation thickness (50 – 300 feet typical) for vertical wells

Barnett Shale: Intensive Drilling Activity 1997 - Present

27

CDM

Environmental Concerns

Surface Considerations Subsurface Considerations

Air Emissions

- Water Supply / Water Handling / Water Disposal
- Surface Impact
 - Drilling Locations (Pit Construction; Chemical Storage; Erosion Control)
 - Infrastructure (Roads; Compressors; Pipelines; Water Treatment Facilities)
 - Truck Traffic and Road Damage
- Protecting Underground Water Resources
- Frac Fluid Disclosure

Marcellus Basin Surface Waters

The Shale Development Solution and Environmental Controversy

- Frac Water Volume: 2 to 6 M gallons
- Additional components include biocides, corrosion inhibitors, O2 scavengers, proppant, etc.
- 20 -30% frac "flowback" water recovery requires collection, handling, and disposal / treatment / reuse

Source: ALL Consulting. Handbook on Coal Bed Methane Produced Water: Management and Beneficial Use Alternatives, July 2003.

Shale Gas and Water

- Source it
- Transport it
- Store it
- Treat it
- Re-use it
 Dispose of it
 Protect it

 Surface Water
 Ground Water

Key Water Management Concerns

- Water "wasting" and general water resource concern
- Surface water quality impacts
- Shallow groundwater quality impacts
 - Long-term soil damage from salinity and sodicity (SAR)
- Transport 1 MG = 200 trucks

BOTTOM LINE:

- Huge unconventional gas resources are driving development; and water solutions are key
- Water quality concerns leading to more treatment and reuse
- Solutions can be simple to very complex *Reduce, Reuse, Recycle* are key goals

Total Water Use – 4 Major Shale Plays

Shale Gas Play	Public Supply	Industrial and Mining	Power Generation	Irrigation Livestock		Shale Gas	Total Water Use (Bbbl/yr)	
Barnett Shale	82.70%	4.50%	3.70%	3.70% 6.30% 2.30%		0.40%	11.15	
Fayetteville Shale	2.30%	1.10%	33.30%	62.90%	0.30%	0.10%	31.9	
Haynesville Shale	45.90%	27.20%	13.50%	50% 8.50% 4.00% 0.80		0.80%	2.15	
Marcellus Shale	11.97%	16.13%	71.70%	0.12%	0.01%	0.06%	85	

Shale Gas: Water Use Efficiency vs. Other Energy Sources

Source: GSI Environmental, Houston, Texas, 2010

34

Composition of a Fracturing Fluid

Reference: All Consulting 2009

CDM

Protection of Groundwater and Surface Water This is a Critically Important Consideration

Source: BNK Petroleum

CDM

Oil & Gas Sites: <u>Environmental Impacts in Regulatory Agency Records</u>

KEY POINT: Impacts to GW and SW by oil and gas wells are rare, with NO impacts recorded by shale gas wells

Barnett Shale: Surface Water Quality, 1990's - Today

KEY POINT: Actual monitoring records show no change in surface water TDS before and after shale gas development.

TDS = Total Dissolved Solids

38

Date (Year

Source: EIA, GSI Environmental, Houston, Texas, 2010

80

Shale Gas: Fast Rate of Water "Flowback"

Source: GSI Environmental, Houston, Texas, 2010

Total Dissolved Solids from the Produced Water Database in the United States

Typical Produced Water TDS Levels – Selected Areas

- Powder River CBM 1200 mg/l
- San Juan CBM 4500 mg/l
- Greater Green River 8000 mg/l
- Fayetteville Shale 25,000 mg/l
- Barnett Shale 60,000 mg/l
- Woodford Shale 110,000 mg/l
- Haynesville Shale 120,000 mg/l
- Permian Basin 140,000 mg/l
- Marcellus Shale 180,000 mg/l

Marcellus Flowback Characteristics

As frac water spends an increasing amount of time in the ground it transitions from fresh water to salty brine, dissolving salt compounds in the earth. Over time, volume decreases and TDS increases.

Current Produced Water Management by Shale Gas Basin

	Shale Gas Basin	Water Management Technology	Availability	Comments				
1	Barnett Shale	Class II injection wells ³⁰³	Commercial and non- commercial	Disposal into the Barnett and underlying Ellenberger Group ³⁰⁴				
		Recycling ³⁰⁵	On-site treatment and recycling	For reuse in subsequent fracturing jobs ³⁰⁶				
	Fayetteville Shale	Class II injection wells ³⁰⁷	Non-commercial	Water is transported to two injection wells owned and operated by a single producing company ³⁰⁸				
		Recycling	On-site recycling	For reuse in subsequent fracturing jobs ³⁰⁹				
	Haynesville Shale	Class II injection wells	Commercial and non- commercial					
_		Class II injection wells	Commercial and non- commercial	Limited use of Class II injection wells ^{310,311}				
	Marcellus Shale	Treatment and discharge	Municipal waste water treatment facilities, commercial facilities reportedly contemplated ³¹²	Primarily in Pennsylvania				
		Recycling	On-site recycling	For reuse in subsequent fracturing jobs ³¹³				
		Class II injection wells	Commercial	Disposal into multiple confining formations ³¹⁴				
	Woodford Shale	Land Application		Permit required through the Oklahoma Corporation Commission ³¹⁵				
		Recycling	Non-commercial	Water recycling and storage facilities at a central location ³¹⁶				
	Antrim Shale	Class II injection wells	Commercial and non- commercial					
	New Albany Shale	Class II injection wells	Commercial and non- commercial					

Shale Gas: Insufficient Injection Well Capacity in Northeast

SOURCE: Robertson, 2010; De Leon, 2010; Ball, 2010; Nemecek, 2010; Organek, 2010; Shott, 2010; NYS-DEC, 2010a; Arthur, 2009; Clark and Veil, 2009; Grable, 2009.

KEY POINT: Very few Class II injection wells in Marcellus, requiring alternative methods of water disposal

Treatment Technologies – Treatment Options

Technology	Bact.	СНЗОН	0/G	DRO	GRO	ТА	HCO3-	тн	Са	Mg	Fe	Ва	St	SO4	Cl	TDS	TSS	Poly mers
API Separators			Х															
Dissolved Gas Flotation				Х	Х													
Activated Carbon			Х	Х	Х													Х
Nut Shell Filters			Х															
Organi-Clay Adsorbants			Х															
Chemical Oxidation	X										Х							Х
UV Disinfection	Х																	
Biological Processes			Х	Х	Х													
Air Stripper					Х	Х	Х											
Chemical Precipitation								Х	Х	Х	Х	Х	Х	Х				
Lime/Soda Softening	Х					Х	Х	Х	Х	Х	Х							
Clariifers																	Х	
Settling Ponds																	Х	
Ion Exchange								Х	Х	Х	Х	Х	Х	Х	Х	Х		
Multi- Media Filtration																	Х	
Membrane Filtration	Х																Х	
Greensand Filters	Х										Х							
Cartridge Filters																	Х	
Reverse Osmosis						Х	Х	Х	Х	Х				Х	Х	Х		
Evaporation								Х	Х	Х	Х	Х	Х	Х	Х	Х		
Steam Stipping		Х		Х	Х													
Acidification						Х	Х											

Oil and Gas / Water Knowledge Convergence

COMMUNITY

- Energy Needs
- Environmental Concerns
- Limited Technical Expertise

OIL & GAS COMPANIES

- Exploration and Production Expertise
- Limited Water Expertise

ENVIRONMENTALLY SOUND ENERGY DEVELOPMENT

ENGINEERING AND SCIENCE COMMUNITY

Water Expertise
 Limited Oil & Gas Exploration
 & Production Expertise

REGULATORS

- Environmental Management Responsibility
- New Challenges
- Stretched Resources

45

Questions and Answers

C. Hunter Nolen, P.E., BCEE President, Industrial Services Group

CDM

1777 N.E. Loop 410, Suite 500 San Antonio, Texas 78217 210-826-3200 (office) 713-858-2372 (cell) nolench@cdm.com (email)