Key Considerations for Frac Flowback / Produced Water Reuse and Treatment NJWEA Annual Conference – Atlantic City, NJ

May 2012

Today's Agenda

- Overview of Hydraulic Fracturing Process
- Water Quality
- Treatment Alternatives

Hydraulic Fracturing

- Frac Method: Typically slick water frac
- Wells: 4 to 8 wells per pad
- Frac Water Volume: 4 to 6 million gallons per well (95k to 142k bbl)

0

Flowback: 15 – 35% return

Composition of a Fracturing Fluid

- Fracturing solution consists of sand and water
- Additives include biocides, corrosion inhibitors, O2 scavengers, friction reducers, surfactants, etc.

Frac Flowback Water Quality

All values in mg/L

Parameter	Feed Water	Flowback
рН	8.5	4.5 to 6.5
Calcium	22	22,200
Magnesium	6	1,940
Sodium	57	32,300
Iron	4	539
Barium	0.22	228
Strontium	0.45	4,030
Sulfate	5	32
Chloride	20	121,000
Methanol	Neglible	2,280
тос	Neglible	5,690
TSS	Neglible	1,211
TDS	<500	182,273

Typical Flowback Characteristics

The longer Frac water is in the formation, the higher the TDS levels may become.

Wide Variation in Frac Flowback Chemistry

Parameter	Frac 1	Frac 2	Frac 3	Frac 4
Barium	7.75	2,300	3,310	4,300
Calcium	683	5,140	14,100	31,300
Iron	211	11.2	52.5	134.1
Magnesium	31.2	438	938	1,630
Manganese	16.2	1.9	5.17	7.0
Strontium	4.96	1,390	6,830	2,000
TDS	6,220	69,640	175,268	248,428
TSS	490	48	416	330
COD	1,814	567	600	2,272

All values in mg/L Ref: ProChemTech International, Inc.

7

Total Dissolved Solids from the Produced Water Database in the United States

Typical Produced Water TDS Levels – Selected Areas

- Powder River CBM 1,200 mg/l
- San Juan CBM 4,500 mg/l
- Greater Green River 8,000 mg/l
- Eagle Ford Shale 20,000 mg/l
- Fayetteville Shale 25,000 mg/l
- Barnett Shale 60,000 mg/l
- Woodford Shale 110,000 mg/l
- + Haynesville Shale 120,000 mg/l
- Permian Basin 140,000 mg/l
- Marcellus Shale 180,000 mg/l

Key Water Management Concerns

- Wasting water and general water resource concern
- Surface water quality impacts
 - Shallow groundwater quality impacts
 - Long-term soil damage from salinity
- Transportation –100,000 bbl = 770 trucks

BOTTOM LINE:

- Huge unconventional gas resources are driving development; and water solutions are key
- Water quality concerns leading to more treatment and reuse
- Solutions can be simple to very complex – *Reduce, Reuse, Recycle* are key goals

Design Basis Critical First Step

- Feed Water Volume
- Feed Water Quality
- Treated Effluent Requirements
- Site Specific
 Considerations

Flowback / Produced Water Treatment Solutions

- Treatment for Reuse Without TDS Removal
- Treat for Reuse / Discharge with TDS Removal

11

TREATMENT FOR REUSE WITHOUT TDS REMOVAL

Range of Applicability vs. Cost

13

Example Feed Water Quality

Water May Also Contain:

- Polymers
- Other Organics
- Radium
- Other Inorganics (e.g., boron)

Parameter	Feed Water
рН	6.09
Bicarbonate	144
Calcium	11,595
Magnesium	690
Sodium	33,250
Iron (diss)	76
Barium	2,775
Strontium	3,633
Chloride	81,000
TSS	295
TDS	132,265

Example Treatment Requirements

- pH: 6.5 to 7.5
- Iron: < 10 mg/L</p>
- TSS: < 50 mg/L
- Bacteria: None
- Treatment Residuals:Non-hazardous
 - Mobile system required (5,000 to 10,000 BWPD)

Keys Design Considerations

Water Chemistry

- Presence of organics, oxygen, and nutrients will result in bacteria growth!
- Precipitation of barium sulfate
 will tend to adsorb radium, which may
 cause the sludge to become hazardous

Treatment Selection

- Efficient solids / liquid separate required (small footprint)
- Sludge management
- Chemical consumption / dosing

Treatment Technology Options

Technology	Bact.	СНЗОН	O/G	DRO	GRO	ТА	HCO3-	тн	Са	Mg	Fe	Ва	St	SO4	Cl	TDS	TSS	Poly mers
API Separators			Х															
Dissolved Gas Flotation				Х	Х													
Activated Carbon			Х	Х	Х													X
Nut Shell Filters			X															
Organi-Clay Adsorbants			X															
Chemical Oxidation	X										Х							X
UV Disinfection	Х																	
Biological Processes			X	Х	Х													
Air Stripper					Х	Х	Х											
Chemical Precipitation								Х	Х	Х	Х	Х	Х	X				
Lime/Soda Softening	Х					Х	Х	Х	Х	Х	Х							
Clariifers																	Х	
Settling Ponds																	Х	
Ion Exchange								Х	Х	Х	Х	Х	Х	X	Х	Х		
Multi- Media Filtration																	Х	
Membrane Filtration	X																Х	
Greensand Filters	X										Х							
Cartridge Filters																	Х	
Reverse Osmosis						Х	Х	Х	Х	Х				Х	Х	Х		
Evaporation								Х	Х	Х	Х	Х	Х	X	Х	Х		
Steam Stipping		Х		Х	Х													
Acidification						Х	X											

17

Example of Reuse Treatment Solution Without TDS Removal

Step 1. Chlorine Dioxide Oxidation

- Chlorine dioxide is strong oxidant that provides selective chemical oxidation
- Breaks oil / grease emulsions
- Destroys friction reducers and other chemical additives
 Kills Bacteria
 - Oxidizes reduced compounds, such as Fe, Mn, Sulfide, etc.
- More efficient than bleach does not react with ammonia and many other organics

Step 2. Dissolved Air Flotation

- Fine bubble diffusion floats oil / grease and TSS to top
- Skimmer potentially recovers saleable oil
- Covered designs also available for VOC emission control
- Skid-mounted design

Step 3. Multi-Media Sand Filtration

- Conventional sand filter removes TSS before reuse
- Acid or carbon dioxide addition ahead of filter to reduce pH and eliminate calcium carbonate scaling
 Periodically backwashed with filtered water. BW returned to front of system.
- Chlorine dioxide disinfection of final product water

21

Summary of Reuse Treatment Without TDS Removal

- Simplest and least expensive form of treatment
- Multiple technology and design options available
- Reduces fresh water makeup requirements and off-site disposal costs
- Applicable only if drilling operations that need frac flowback water are on-going
 - Bench and pilot-scale testing recommended to select best treatment options and minimize cost

TREATMENT OPTIONS FOR TDS REMOVAL

.

Viable TDS Removal Alternatives

- Membrane Treatment
- Evaporation
- Crystallization

Range of Applicability vs. Cost

Reverse Osmosis

- Membrane separation technology that removes dissolved solids (TDS) from water
- Membrane is semi-impermeable allowing only water to pass; 99%+ of all ionized species are rejected
- Non-selective
 treatment process
 - Degree of <u>all</u> ion rejection is dictated by size and charge
- NF is a loose RO membane

Reverse Osmosis (continued)

- Maximum concentrate TDS is approx. 80,000 mg/L
- Energy costs are 1/10th to 1/15th the cost of mechanical evaporation
- Skid-mounted, compact design
- Operating pressures up to 1200 psig
 Multiple membranes and manufacturers available

27

Historical Problems with RO Treatment for Produced Water

Limited success due to inadequate pretreatment, resulting in fouling and scaling from:

- Calcium Hardness
- Iron
- Barium and Strontium
- Silica
- Microbiological Growth
- Organics
 - Silt and Suspended Solids

Scale Forming Salts

Salt	Saturation Concentration (mg/L)					
Calcium Carbonate (CaCO ₃)	8					
Calcium Fluoride (CaF ₂)	29					
Calcium Orthophosphate (CaHPO ₄)	68					
Calcium Sulfate (CaSO ₄)	680					
Strontium Sulfate (SrSO ₄)	146					
Barium Sulfate (BaSO ₄)	3					
Silica, amorphous (SiO ₂)	120					

Key to Success: Efficient Pretreatment

Pretreatment Steps:

- Organics removal (oil / grease, polymers, etc.)
- Efficient management of hardness and metals
- Particulate removal
- Bacteria control

Result: Better pretreatment leads to less membrane fouling, higher water recovery and a lower cost of brine disposal

Example Treatment Solution for TDS Removal

Range of Applicability vs. Cost

Evaporation

- Ideal TDS Range of Feed Water is 40,000 to 120,000 mg/L
- Produces high quality distillate and liquid brine concentrate
 - Brine concentrate requires further treatment or disposal (max TDS concentration is approx. 260,000 mg/L)
- Evaporation systems more energy intensive than RO
- Most evaporation systems cannot handle any solids

Types of Evaporation Systems

- Forced Circulation
- Falling Film
- Rising Film
- Agitated Thin Film
- Plate and Frame

Selection Considerations

- Chemical Composition of Feed Stream
- Scaling / Fouling Potential
- Foaming Potential
- Materials of Construction
 - Chloride concentrations
 - Temperature

Economization

Multiple Effects

- Vapor From Each Effect is used in the Next / Previous
 Effect Depending on Set-up to Reduce Steam Use
- Vacuum
 - Reduces Boiling Point
 - Maximizes Efficiency When Used in Concert With Multiple Effects
 - **Mechanical Vapor Recompression**
 - Recompresses the Vapor to Reduce Steam Use
 - Usually Uses Just One Effect

MVR Evaporator Most Economical for this Application

Range of Applicability vs. Cost

Crystallizer

- Complex system capable of producing purified salt <u>products</u> from impure solutions
- Multiple Types of Crystallizers available
 - Principals of Crystallization include:
 - Evaporation to form supersaturated solution
 - Nucleation and growth of salt crystals
 - Harvesting, washing and drying of salt crystals

Application of a Crystallizer in the Marcellus

Crystallizer Products:

 \bullet

- Calcium Chloride Liquid
- Sodium Chloride Dry Salt
- Distilled Water

Parameter	Feed Water
рН	6.09
Bicarbonate	144
Calcium	11,595
Magnesium	690
Sodium	33,250
Iron (diss)	76
Barium	2,775
Strontium	3,633
Chloride	81,000
TSS	295
TDS	132,265

Crystallizer Block Flow Diagram

41

Key Considerations

- Proper Design
- Feed Water Management
- Economics Byproduct Chemical Sales (ASTM specifications)

TDS Treatment Options Summary

- RO membranes have found little use in the Marcellus
- Evaporation technology using Mechanical Vapor Recompression most common form of TDS Treatment
- Crystallization technology is complex but can be cost effective with sale of commodity chemical byproducts
 All technologies generally produce some amount of waste brine that requires disposal

Questions and Answers

Robert J. Kimball, P.E., BCEE Technical Director Produced Water Treatment

CDM Smith

50 West 14th Street Helena, MT 59601 406-441-1441 (office) Kimballrj@cdmsmith.com (email)

