Key Considerations for Frac Flowback / Produced Water Reuse and Treatment
NJWEA Annual Conference – Atlantic City, NJ

May 2012
Today’s Agenda

• Overview of Hydraulic Fracturing Process
• Water Quality
• Treatment Alternatives
Hydraulic Fracturing

- Frac Method: Typically slick water frac
- Wells: 4 to 8 wells per pad
- Frac Water Volume: 4 to 6 million gallons per well (95k to 142k bbl)
- Flowback: 15 – 35% return
Composition of a Fracturing Fluid

- Fracturing solution consists of sand and water
- Additives include biocides, corrosion inhibitors, O2 scavengers, friction reducers, surfactants, etc.

Reference: All Consulting 2009
Frac Flowback Water Quality

All values in mg/L

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Feed Water</th>
<th>Flowback</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.5</td>
<td>4.5 to 6.5</td>
</tr>
<tr>
<td>Calcium</td>
<td>22</td>
<td>22,200</td>
</tr>
<tr>
<td>Magnesium</td>
<td>6</td>
<td>1,940</td>
</tr>
<tr>
<td>Sodium</td>
<td>57</td>
<td>32,300</td>
</tr>
<tr>
<td>Iron</td>
<td>4</td>
<td>539</td>
</tr>
<tr>
<td>Barium</td>
<td>0.22</td>
<td>228</td>
</tr>
<tr>
<td>Strontium</td>
<td>0.45</td>
<td>4,030</td>
</tr>
<tr>
<td>Sulfate</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>Chloride</td>
<td>20</td>
<td>121,000</td>
</tr>
<tr>
<td>Methanol</td>
<td>Neglible</td>
<td>2,280</td>
</tr>
<tr>
<td>TOC</td>
<td>Neglible</td>
<td>5,690</td>
</tr>
<tr>
<td>TSS</td>
<td>Neglible</td>
<td>1,211</td>
</tr>
<tr>
<td>TDS</td>
<td><500</td>
<td>182,273</td>
</tr>
</tbody>
</table>
Typical Flowback Characteristics

The longer Frac water is in the formation, the higher the TDS levels may become.

Source: Siemens AG 2009
Wide Variation in Frac Flowback Chemistry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frac 1</th>
<th>Frac 2</th>
<th>Frac 3</th>
<th>Frac 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>7.75</td>
<td>2,300</td>
<td>3,310</td>
<td>4,300</td>
</tr>
<tr>
<td>Calcium</td>
<td>683</td>
<td>5,140</td>
<td>14,100</td>
<td>31,300</td>
</tr>
<tr>
<td>Iron</td>
<td>211</td>
<td>11.2</td>
<td>52.5</td>
<td>134.1</td>
</tr>
<tr>
<td>Magnesium</td>
<td>31.2</td>
<td>438</td>
<td>938</td>
<td>1,630</td>
</tr>
<tr>
<td>Manganese</td>
<td>16.2</td>
<td>1.9</td>
<td>5.17</td>
<td>7.0</td>
</tr>
<tr>
<td>Strontium</td>
<td>4.96</td>
<td>1,390</td>
<td>6,830</td>
<td>2,000</td>
</tr>
<tr>
<td>TDS</td>
<td>6,220</td>
<td>69,640</td>
<td>175,268</td>
<td>248,428</td>
</tr>
<tr>
<td>TSS</td>
<td>490</td>
<td>48</td>
<td>416</td>
<td>330</td>
</tr>
<tr>
<td>COD</td>
<td>1,814</td>
<td>567</td>
<td>600</td>
<td>2,272</td>
</tr>
</tbody>
</table>

All values in mg/L
Total Dissolved Solids from the Produced Water Database in the United States

• Typical Produced Water TDS Levels – Selected Areas
 – Powder River CBM – 1,200 mg/l
 – San Juan CBM – 4,500 mg/l
 – Greater Green River – 8,000 mg/l
 – Eagle Ford Shale – 20,000 mg/l
 – Fayetteville Shale – 25,000 mg/l
 – Barnett Shale – 60,000 mg/l
 – Woodford Shale – 110,000 mg/l
 – Haynesville Shale – 120,000 mg/l
 – Permian Basin – 140,000 mg/l
 – **Marcellus Shale** – 180,000 mg/l

Source: USGS
Key Water Management Concerns

- Wasting water and general water resource concern
- Surface water quality impacts
- Shallow groundwater quality impacts
- Long-term soil damage from salinity
- Transportation – 100,000 bbl = 770 trucks

BOTTOM LINE:

- Huge unconventional gas resources are driving development; and water solutions are key
- Water quality concerns leading to more treatment and reuse
- Solutions can be simple to very complex – *Reduce, Reuse, Recycle* are key goals
Design Basis
Critical First Step

- Feed Water Volume
- Feed Water Quality
- Treated Effluent Requirements
- Site Specific Considerations
Flowback / Produced Water Treatment Solutions

- Treatment for Reuse Without TDS Removal
- Treat for Reuse / Discharge with TDS Removal
TREATMENT FOR REUSE
WITHOUT TDS REMOVAL
Range of Applicability vs. Cost

- **RO**
 - Total Dissolved Solids (mg/L TDS): 3,000
 - Costs per Barrel: 750
- **Evaporation**
 - Total Dissolved Solids (mg/L TDS): 40,000
 - Costs per Barrel: 3,000
- **Crystallization**
 - Total Dissolved Solids (mg/L TDS): 260,000
 - Costs per Barrel: 1,000,000
- **Treatment for Reuse**
 - No TDS Removal
 - Costs per Barrel: 13
 - Total Dissolved Solids (mg/L TDS): 260,000
Example Feed Water Quality

- Water May Also Contain:
 - Polymers
 - Other Organics
 - Radium
 - Other Inorganics (e.g., boron)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Feed Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.09</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>144</td>
</tr>
<tr>
<td>Calcium</td>
<td>11,595</td>
</tr>
<tr>
<td>Magnesium</td>
<td>690</td>
</tr>
<tr>
<td>Sodium</td>
<td>33,250</td>
</tr>
<tr>
<td>Iron (diss)</td>
<td>76</td>
</tr>
<tr>
<td>Barium</td>
<td>2,775</td>
</tr>
<tr>
<td>Strontium</td>
<td>3,633</td>
</tr>
<tr>
<td>Chloride</td>
<td>81,000</td>
</tr>
<tr>
<td>TSS</td>
<td>295</td>
</tr>
<tr>
<td>TDS</td>
<td>132,265</td>
</tr>
</tbody>
</table>
Example Treatment Requirements

- pH: 6.5 to 7.5
- Iron: < 10 mg/L
- TSS: < 50 mg/L
- Bacteria: None
- Treatment Residuals: Non-hazardous
- Mobile system required (5,000 to 10,000 BWPD)
Keys Design Considerations

- **Water Chemistry**
 - Presence of organics, oxygen, and nutrients will result in bacteria growth!
 - Precipitation of barium sulfate will tend to adsorb radium, which may cause the sludge to become hazardous

- **Treatment Selection**
 - Efficient solids / liquid separate required (small footprint)
 - Sludge management
 - Chemical consumption / dosing

![Diagram]
Treatment Technology Options

<table>
<thead>
<tr>
<th>Technology</th>
<th>Bact.</th>
<th>CH3OH</th>
<th>O/G</th>
<th>DRO</th>
<th>GRO</th>
<th>TA</th>
<th>HCO3-</th>
<th>TH</th>
<th>Ca</th>
<th>Mg</th>
<th>Fe</th>
<th>Ba</th>
<th>St</th>
<th>SO4</th>
<th>Cl</th>
<th>TDS</th>
<th>TSS</th>
<th>Polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>API Separators</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dissolved Gas Flotation</td>
<td></td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Activated Carbon</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nut Shell Filters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Organi-Clay Adsorbants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chemical Oxidation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UV Disinfection</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biological Processes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Air Stripper</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chemical Precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime/Soda Softening</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clariifers</td>
<td></td>
</tr>
<tr>
<td>Settling Ponds</td>
<td></td>
</tr>
<tr>
<td>Ion Exchange</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi- Media Filtration</td>
<td></td>
</tr>
<tr>
<td>Membrane Filtration</td>
<td></td>
</tr>
<tr>
<td>Greensand Filters</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cartridge Filters</td>
<td></td>
</tr>
<tr>
<td>Reverse Osmosis</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporation</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Stipping</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Acidification</td>
<td></td>
</tr>
</tbody>
</table>
Example of Reuse Treatment Solution Without TDS Removal

- **Frac Flowback Water**
- **Chemical Oxidation**
- **Free Oil and TSS Removal**
- **TSS and O/G Polish**
- **Disinfection**

- **Oil Byproduct**
- **Sludge for dewatering/disposal**
- **Treated Water**
- **Promotion of:**
 - Chlorine Dioxide
 - Air

- **Sand Filter:**
 - TSS Removal
 - Chlorine Dioxide
Step 1. Chlorine Dioxide Oxidation

- Chlorine dioxide is a strong oxidant that provides selective chemical oxidation
- Breaks oil / grease emulsions
- Destroys friction reducers and other chemical additives
- Kills Bacteria
- Oxidizes reduced compounds, such as Fe, Mn, Sulfide, etc.
- More efficient than bleach – does not react with ammonia and many other organics

Ref: Sabre Technologies
Step 2. Dissolved Air Flotation

- Fine bubble diffusion floats oil / grease and TSS to top
- Skimmer potentially recovers saleable oil
- Covered designs also available for VOC emission control
- Skid-mounted design

NOTE: Dissolved Gas or Induced Gas Flotation may also be considered

Ref: Pan America Environmental Website
Step 3. Multi-Media Sand Filtration

• Conventional sand filter removes TSS before reuse
• Acid or carbon dioxide addition ahead of filter to reduce pH and eliminate calcium carbonate scaling
• Periodically backwashed with filtered water. BW returned to front of system.
• Chlorine dioxide disinfection of final product water
Summary of Reuse Treatment

Without TDS Removal

- Simplest and least expensive form of treatment
- Multiple technology and design options available
- Reduces fresh water makeup requirements and off-site disposal costs
- Applicable only if drilling operations that need frac flowback water are on-going
- Bench and pilot-scale testing recommended to select best treatment options and minimize cost
TREATMENT OPTIONS FOR TDS REMOVAL
Viable TDS Removal Alternatives

• Membrane Treatment
• Evaporation
• Crystallization
Range of Applicability vs. Cost

- **RO**
- **Evaporation**
- **Crystallization**

Total Dissolved Solids (mg/L TDS)

- Treatment for Reuse
- Evaporation
- Crystallization

$ Costs per Barrel

- RO: 750
- Evaporation: 3,000
- Crystallization: 40,000
- Treatment for Reuse: 260,000
- 1,000,000
Reverse Osmosis

- Membrane separation technology that removes dissolved solids (TDS) from water
- Membrane is semi-impermeable - allowing only water to pass; 99%+ of all ionized species are rejected
- Non-selective treatment process
- Degree of all ion rejection is dictated by size and charge
- NF is a loose RO membrane
Reverse Osmosis (continued)

- Maximum concentrate TDS is approx. 80,000 mg/L
- Energy costs are $1/10^{th}$ to $1/15^{th}$ the cost of mechanical evaporation
- Skid-mounted, compact design
- Operating pressures up to 1200 psig
- Multiple membranes and manufacturers available
Historical Problems with RO Treatment for Produced Water

- Limited success due to inadequate pretreatment, resulting in fouling and scaling from:
 - Calcium Hardness
 - Iron
 - Barium and Strontium
 - Silica
 - Microbiological Growth
 - Organics
 - Silt and Suspended Solids
Scale Forming Salts

<table>
<thead>
<tr>
<th>Salt</th>
<th>Saturation Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Carbonate (CaCO$_3$)</td>
<td>8</td>
</tr>
<tr>
<td>Calcium Fluoride (CaF$_2$)</td>
<td>29</td>
</tr>
<tr>
<td>Calcium Orthophosphate (CaHPO$_4$)</td>
<td>68</td>
</tr>
<tr>
<td>Calcium Sulfate (CaSO$_4$)</td>
<td>680</td>
</tr>
<tr>
<td>Strontium Sulfate (SrSO$_4$)</td>
<td>146</td>
</tr>
<tr>
<td>Barium Sulfate (BaSO$_4$)</td>
<td>3</td>
</tr>
<tr>
<td>Silica, amorphous (SiO$_2$)</td>
<td>120</td>
</tr>
</tbody>
</table>
Key to Success: Efficient Pretreatment

- Pretreatment Steps:
 - Organics removal (oil / grease, polymers, etc.)
 - Efficient management of hardness and metals
 - Particulate removal
 - Bacteria control

Result: Better pretreatment leads to less membrane fouling, higher water recovery and a lower cost of brine disposal
Example Treatment Solution for TDS Removal

- Frac Flowback Water
- Chlorine Dioxide
- Air
- Sludge for dewatering/disposal
- RO: TDS Removal
- Treated Water
- Brine Conc.
- Sand Filter: TSS Removal
- Chlorine Dioxide
- Cartridge Filtration: TSS Polish
- Anti-scalant
- Sulfite
- Oil Byproduct
- Oil Byproduct
Evaporation

- Ideal TDS Range of Feed Water is 40,000 to 120,000 mg/L
- Produces high quality distillate and liquid brine concentrate
- Brine concentrate requires further treatment or disposal (max TDS concentration is approx. 260,000 mg/L)
- Evaporation systems more energy intensive than RO
- Most evaporation systems cannot handle any solids
Types of Evaporation Systems

- Forced Circulation
- Falling Film
- Rising Film
- Agitated Thin Film
- Plate and Frame
Selection Considerations

- Chemical Composition of Feed Stream
- Scaling / Fouling Potential
- Foaming Potential
- Materials of Construction
 - Chloride concentrations
 - Temperature
Economization

- **Multiple Effects**
 - Vapor From Each Effect is used in the Next / Previous Effect Depending on Set-up to Reduce Steam Use

- **Vacuum**
 - Reduces Boiling Point
 - Maximizes Efficiency When Used in Concert With Multiple Effects

- **Mechanical Vapor Recompression**
 - Recompresses the Vapor to Reduce Steam Use
 - Usually Uses Just One Effect
MVR Evaporator

Most Economical for this Application
Range of Applicability vs. Cost

- **RO**
- **Evaporation**
- **Crystallization**

Total Dissolved Solids (mg/L TDS):
- Treatment for Reuse: 260,000
- Evaporation: 40,000
- RO: 3,000
- Crystallization: 750

Costs per Barrel:
- Treatment for Reuse: $1,000,000
- Evaporation: $260,000
- RO: $260,000
- Crystallization: $40,000

$ Costs per Barrel
Crystallizer

- Complex system capable of producing purified salt **products** from impure solutions
- Multiple Types of Crystallizers available
- Principles of Crystallization include:
 - Evaporation to form supersaturated solution
 - Nucleation and growth of salt crystals
 - Harvesting, washing and drying of salt crystals
Application of a Crystallizer in the Marcellus

- Crystallizer Products:
 - Calcium Chloride Liquid
 - Sodium Chloride Dry Salt
 - Distilled Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Feed Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.09</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>144</td>
</tr>
<tr>
<td>Calcium</td>
<td>11,595</td>
</tr>
<tr>
<td>Magnesium</td>
<td>690</td>
</tr>
<tr>
<td>Sodium</td>
<td>33,250</td>
</tr>
<tr>
<td>Iron (diss)</td>
<td>76</td>
</tr>
<tr>
<td>Barium</td>
<td>2,775</td>
</tr>
<tr>
<td>Strontium</td>
<td>3,633</td>
</tr>
<tr>
<td>Chloride</td>
<td>81,000</td>
</tr>
<tr>
<td>TSS</td>
<td>295</td>
</tr>
<tr>
<td>TDS</td>
<td>132,265</td>
</tr>
</tbody>
</table>
Key Considerations

• Proper Design
• Feed Water Management
• Economics – Byproduct Chemical Sales (ASTM specifications)
TDS Treatment Options Summary

- RO membranes have found little use in the Marcellus
- Evaporation technology using Mechanical Vapor Recompression most common form of TDS Treatment
- Crystallization technology is complex but can be cost effective with sale of commodity chemical byproducts
- All technologies generally produce some amount of waste brine that requires disposal
Questions and Answers

Robert J. Kimball, P.E., BCEE
Technical Director Produced
Water Treatment

50 West 14th Street
Helena, MT 59601
406-441-1441 (office)
Kimballrj@cdmsmith.com (email)