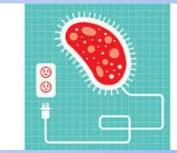
Electricity Directly from Wastewater – an Overview of the New Field of Electromicrobiology

Jurek Patoczka

Jurek.Patoczka@hatchmott.com


Hatch Mott MacDonald, Iselin, NJ

NJ WEA, Atlantic City, NJ May 12, 2014

Acknowledgements

- Li, B., Scheible, Curtis, M. (2011) Electricity Generation from Anaerobic Wastewater Treatment in Microbial Fuel Cells, WERF Report
- Logan, B.E., Zuo, Y. (2008) New Electrode Material for Microbial Fuel Cells ..., WEFTEC
- Franks, A. (2012) What's Current with Electric Microbes?, J Bacteriol Parasitol
- Lovely, D.R. (2012) Electromicrobiology, Annu. Rev. Microbiology
- Xie, X. et al. (2013) Microbial battery for efficient energy recovery, PNAS

Electromicrobiology

- New field of interdisciplinary microbiology dealing with microbes capable of interacting with insoluble electron acceptors/donors (electrodes)
- "Electric" bacteria are capable of transferring electrons extracellularly from solid surfaces. This drives internal metabolic processes
- Present in Nature for eons, only recently more sensitive sensors allow in-depth study

Energy

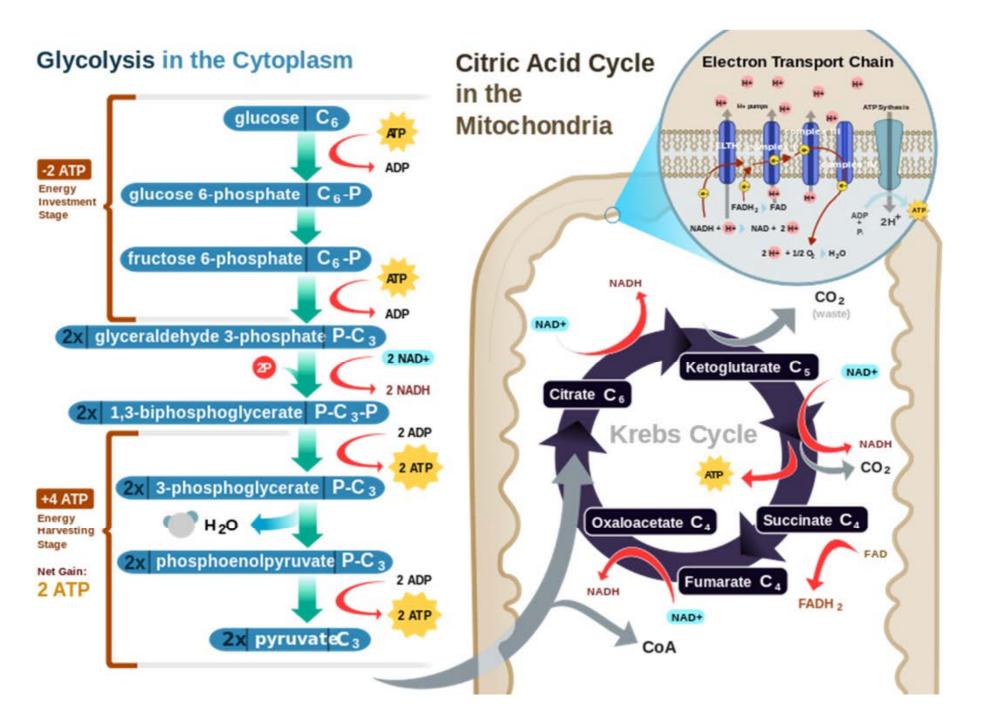
Source of most of energy in human endeavors is burning of fossil fuels



Energy from Fossil Fuels

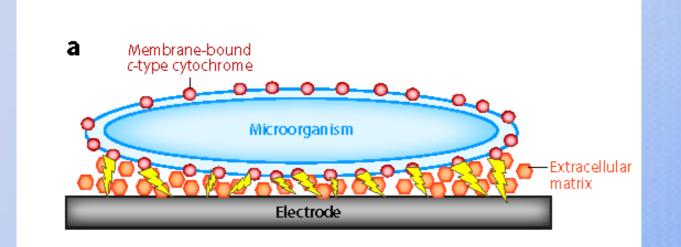
C (organic carbon) + $O_2 \rightarrow CO_2$ + energy

- Oxygen serves here as electron acceptor (gets reduced from 0 to -2), in a reaction that releases heat
- Photosynthesis green plants utilize sun's energy for loading carbon in CO₂ with electrons stripped from O⁻² in CO₂ and releasing O₂; that now combustible (organic) carbon is converted into biomass – future fuel

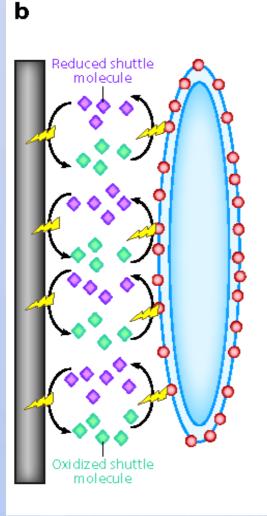


- Respiration a familiar way of life for almost all organisms in animal kingdom (including bacteria)
 - As in a fuel burning, Oxygen is used as electron acceptor with CO₂ being end product. It is just done at a controlled pace, at low temperatures
 - Heterotrophic ("normal") and nitrifying bacteria do it in aerobic activated sludge utilizing O₂
 - Other electron acceptors are used in anoxic zone (NO₃⁻) and in anaerobic processes (SO₄⁻², ammonia, organic compounds)

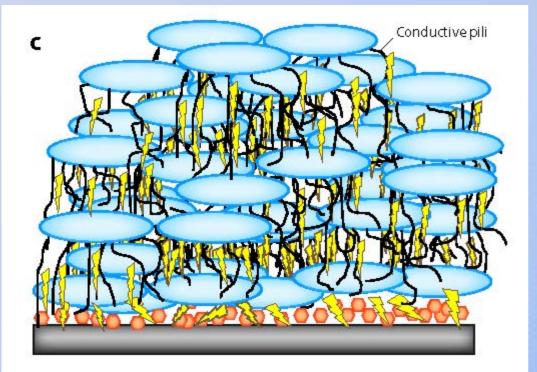
Respiration


- In "normal" bacterial respiration the key process of electron transfer to electron acceptor (molecular oxygen) happens by diffusion of Oxygen to cell or cell wall
- A cascade of chemical reactions takes than place inside the cell and through molecular exchanges through the cell membrane

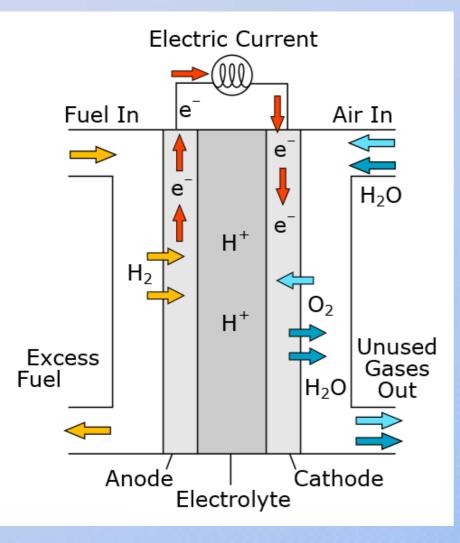
Key Discovery


- Some microorganisms are capable of oxidizing organic compounds with direct electron transfer to electrodes
- In other words, oxygen (or other electron acceptor, such as NO₃⁻, SO₄⁻², other organics) does not need to migrate inside the cell or be at the cell wall

Mechanisms of Electron Transfer by Bacteria to Electrode

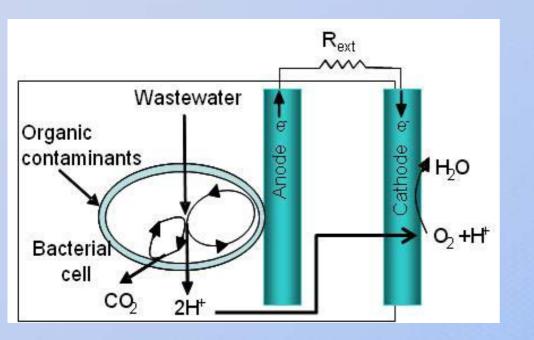

Short-range electron transfer through redox active proteins such as c-type cytochromes (associated with outer cell surface)

Mechanisms of Electron Transfer by Bacteria to Electrode


Transfer by reduction of soluble electron shuttle molecules released by bacteria

Mechanisms of Electron Transfer by Bacteria to Electrode

Long-range transfer through pili – a conductive bilofilm with "nanowires"


Fuel Cell

- Converts fuel

 (hydrogen or
 hydrocarbons) directly
 to electricity
- Strips e⁻ from H₂
- Protons (H+) have to travel from anode to cathode through an electrolyte
- H₂O generated at cathode

Microbial Fuel Cell (MFC)

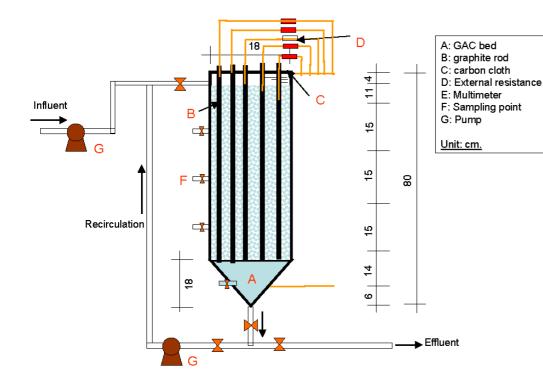
- Carbon anode accepts electrons from bacteria in biofilm
- Electrons react on cathode with oxygen and protons to form H₂O (catalyst needed)
- Hydrophobic membrane separates cathode from anode; allows flow of protons
- So oxygen remains separated from bacteria

MFC - Properties

- While COD removal from wastewater of up to 80% was reported, energetic efficiency in pilot size units is low
- Voltage is limiting, max. 0.6 V in the current design, so for usable conventional power stacking will be required
- ...but there are other potential uses for low voltage power

MFC with Silver

- New designs use anode made of carbon cloth and cathode made of silver oxide
- As silver is toxic to bacteria, cathode is not fouled by bacteria
- As silver oxide is converted to silver, cathode needs to be regenerated (re-oxidized)
- > 30% efficiency in extracting energy from wastewater shown in lab conditions


MFC – with Activated Carbon

- WERF- supported development of multianode/cathode granular activated carbon microbial fuel cell (MAC-GAC MFC)
- GAC used to support biofilm growth
- Multiple anode/cathode allow higher power density
- > 80% COD removal (real ww)
- Cheaper catalyst MnO₂ vs platinium

MFC – with Activated Carbon

- > After acclimation, HRT of 10 hrs required
- GAC bed is a anode, where electrons discharged by bacteria are accepted
- Carbon cloth is anode, where electrons are accepted by oxygen and combine with protons to form water
- The process of electrons discharged from the cathode (oxygen) requires catalyst to speed it up

MFC with GAC and carbon electrodes

Commercialization

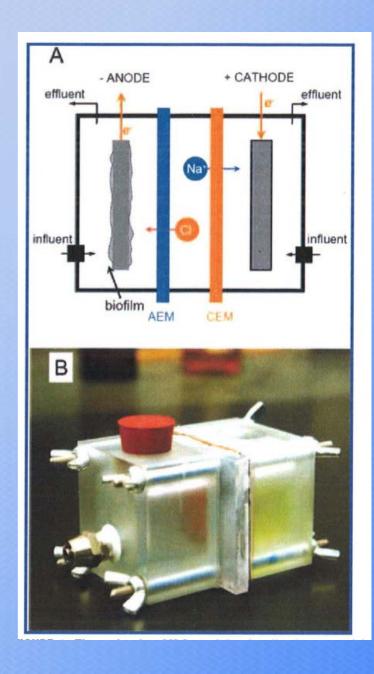
- Pilus Energy GalvaniBot with GeRM keys to prevent theft of technology
- Through Tauriga Sciences they launched this year pilot at Metropolitan Sewer District of Greater Cincinnati
- EcoVolt claims to utilize MFC to mediate anaerobic treatment of high strength wastewater

Problems to overcome

- So far only filtered primary effluent tested
- Low voltage generated (<1 V) will require stacking
- Low power density
- Difficulties in scaling-up

Other Potential MFC Applications

- As sensors for microbial activity
- Powering of low power devices in aquatic environment
- Desalination w/o electricity
- Stimulating bioremediation
- Balancing electron flow during production of commodity chemicals
- Corrosion (transfer of electrons from metals) inhibition

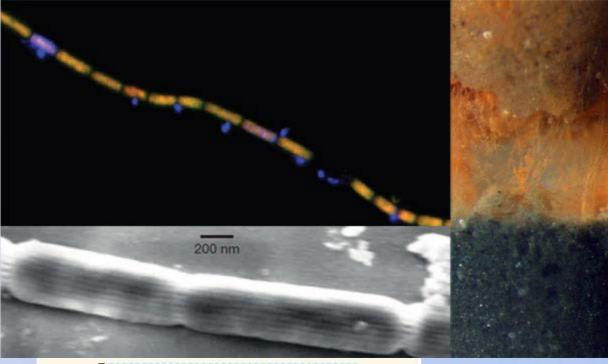


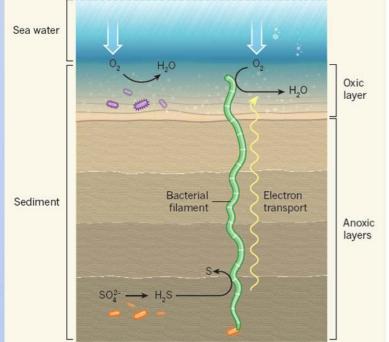
Reverse Microbial Fuel Cell

- Some microbes could actually reverse the situation and accept electrons from an electrode
- Being able to provide energy to microbes directly through an electrode has significant potential for bioremediation of recalcitrant contaminants, such as chlorinated compounds
- Another area is electrosynthesis fixation of CO₂ by microbes utilizing the reducing power of an electrode

Microbial Desalination Cell (MDC)

Potential for sustainable desalination off grid, potentially in conjunction with wastewater treatment and power generation!


MEDIC Microbial Electro De-Ionization Cell


- Current research includes addition of ion-exchange resin to the cell (MEDIC) in a stacked configuration to improve cell conductivity for increased power density and improved desalination rates
- Comines MDC and EDI (electrodeionization)
- > WEFTEC 2013 paper by Shehab, Logan et al
 - Initial NaCl solution de-ionized from 13 g/L to 200 mg/L
 - > 75% COD removal

Geobacter metallireducenes

- Capable of oxidizing organic carbon to CO₂ while utilizing various metal oxides as electron acceptor
- Effectively it "breathes" metal; implications for bioremediation for heavy metals and radionuclides

Can express flagella in a search for oxidized electron acceptor and use special cytochromes as capacitors

Geobacter sulfurreducens unite into "cables" cm long nanowires (pili) to send electrons from SO₄²⁻ to surface for oxygen to take them

Electromicrobiology

- Rapidly emerging field of microbiology
 Better understanding of adaptations mastered for eons by microorganisms
 could soon lead to advancements in many fields, including related to wastewater:
 - Energy directly from organics in wastewater
 - Bacterial desalination
 - Bioremediaton

