Start-up and Optimization of Portable, Packaged Wastewater Treatment Units for Drill Sites in the Kingdom of Saudi Arabia

Vincent Shea, P.E., BCEE (ERM, Ewing, New Jersey, USA)
Contents

Project Background & Approach

Difficulties
- Health & Safety / Travel
- Instrumentation
- Equipment

Findings
- Identified Deficiencies
- Correcting Deficiencies
- Results

Summary
Drill Rigs 101

- Self-contained, “temporary” camps
- Support Facilities:
 - Office & Living Quarters
 - Bathrooms / Showers
 - Kitchen / Mess Hall
 - Laundry
- Everything Mobile
- Focused on Production
 - Built on flat pads with bermed ponds for drilling fluids – and sanitary wastewater
Project Background

■ Government of KSA issued a directive to drilling contractors to provide “treatment” of sanitary wastewater prior to discharge
■ Sustainable reuse/recharge of treated wastewater
■ California Title 22 discharge requirements for unrestricted reuse
■ Primary limit turbidity <2 NTU; additional secondary limits
■ Final chlorination to eliminate health risks

■ ERM’s client under contract to provide numerous portable, packaged wastewater treatment unit to drilling contractors
Project Background

Upon initial deployment of demonstration units, significant operational problems arose:

- Frequently in “upset”
- Multiple re-seedings with biomass
- Could not reliably meet the <2 NTU requirement
- Additional units could not be delivered until technology/design field-proven

ERM provided in-field technical assistance for troubleshooting and system optimization by mobilizing an experienced wastewater engineer with operations experience from the US to KSA.
System Basics

- Moving Bed Bioreactor (MBBR) / Integrated Fixed-Film/Activated Sludge (IFAS)
 - Influent Equalization
 - Anoxic Tank
 - Aerobic Tank (dispersed media)
 - Clarifier
 - DynaDisc Filtration
 - Chlorine Contact Chamber
 - Air Blowers (aeration and sludge lift pumps)
 - Waste Sludge Holding Compartment
 - Set-up for chlorine (sodium hypochlorite) and alum addition

- No flow meters or instrumentation for process control monitoring
- No equipment or tools for general maintenance
MBBR Highlights

- MBBR Process Benefits
 - Higher “Effective” MLSS without Higher Clarifier Solids Loading
 - Enhanced Nitrification
 - Improved Process Stability
 - Improved SVIs / Reduced Sludge Production

- MBBR Design Considerations
 - Primary Treatment
 - Aeration / Mixing
 - Media Mobility
Health & Safety / Difficulties

- Getting there (and back) is half the battle
- Language / Culture
- Basic Hygiene
- Hostile Environment
- Terrorism

- Lack of instrumentation and equipment.
Initial Observations

All critical system components in working order, but…

- Almost Complete Lack of Daily Maintenance
 - Inconsistent Flow Leading to:
 - Inconsistent “feeding” of Biomass
 - Frequent Overflows
 - Why?
 - Time Demands
 - Rotating Personnel/Lack of Continuity
 - Inexperience/Lack of Training

- Field Modifications

- Chemical additions wasting material & diverting attention
Initial Observations (continued)

- Frequent Flow Interruptions / Poor Flow Control
 - Bar Screen
 - Influent transfer valves 100% open
 - Blocked screen between anoxic/aerobic tanks (media migration)
 - Kitchen Grease

- Light brown, thin biomass; pin floc
 - Suggested “young” sludge age from continued difficulties
 - Poor settling characteristics
 - Clarifier solids carry-over

- Floating Cap in Clarifier
 - Denitrification in clarifier
 - Hardened with dust and heat

- 1 to 1.5 feet of dark sludge in clarifier, septic odor suggested inadequate recycle/wasting
Initial Response

- Postpone non-critical field modifications
- Reset system and grow stable biomass
 - Maintain forward flow
 - Increase Return Activated Sludge rate
- Overcome Lack of Maintenance
 - Set Basic Rules for Operation by Rig Personnel
 - Mandatory system inspections 4 times per day
 - Five Simple Steps
 - Clean Influent Bar Screens
 - Open/clear/reset influent flow valves
 - Check/skim clarifier
 - Turn off mixer in anoxic tank – clear perforated plates
 - Waste sludge for ~10 minutes, then reset to recycle
 - Establish Rig Personnel Change-out/Handover Procedures
Tools for Optimization

- Hach Portable Hand-held Turbidity and Suspended Solids Instrument (by Client)
- Hach Portable pH/DO/Conductivity/ORP Instrument
- Sludge Judge
- Other:
 - Screen cleaner – squeegee on broom handle
 - Media removal – Fine-mesh fish net on pole
 - Dip cup – plastic beaker on pole with hose clamps
 - Settling Apparatus – 1000 mL beaker
 - Sample containers – triple-rinsed 5L bleach jugs
- Patience & Creativity
Monitoring Phase at AD-15

- After establishing/implementing 5 Rules for Basic Operation (and completing 1 field modification), began Monitoring Phase

- Monitored:
 - Estimate of flows; use of equalization
 - DO, pH & ORP for operational control
 - Sludge settling characteristics using jar test
 - Total Suspended Solids as estimate for biomass density
 - Turbidity for primary discharge limit

- Settings
 - Set and marked valves based on observed flow
 - Adjusted sludge wasting duration
Performance of AD-15 MBBR

Settling Test – Initial Results on 10/26/10
Performance of AD-15 MBBR

Settling Test – Results on 10/29/10 (morning)
Performance of AD-15 MBBR

Settling Test – Results on 10/29/10 (afternoon)
Performance of AD-15

5 Rules for Basic Operation fully implemented. Field modifications complete.

Arrive KSA

- Clarifier Turbidity (NTU)
- Anoxic Tank TSS (mg/L)

The world’s leading sustainability consultancy
Performance of AD-15

5 Rules for Basic Operation fully implemented. Field modifications complete.
Further Performance Recommendations

- Documentation does not include basic health and safety information regarding working with sanitary wastewater.
- Each deployed MBBR unit should be equipped with basic tools for daily maintenance.
- Each MBBR unit should be posted with a laminated *Normal Operations Guide* (The 5 Rules). Link to photographs to aid in identifying the proper valve or tank.
- A flow meter or easily conducted field method for evaluating daily forward flow should be installed/implemented.
- On a periodic basis, an experienced person should evaluate system operations (field measurements, lab samples, microscopic, etc.).
- One chemical tote is located on a shelf well above waist height. Transferring chemicals into the tote is difficult and presents a safety issue.
- Chemical dosing lines should be rerun with unbroken lengths of tubing, instead of ferruled connections.
In general, the MBBR units at AD-15 and N-236 were not being properly maintained prior to ERM’s arrival in KSA.

Forward flow was set to take full advantage of the equalization tank and provide a steady flow to downstream processes.

5 Basic Rules implemented to provide continuous flow.

RAS changed from daily event (if ever) to a continuous recycle between 50 and 100% of the forward flow.

Over a 9-day period, ERM personnel demonstrated that a quality effluent could be produced with minimal (but not zero) daily attention.

Based on field testing, a 2 NTU daily average discharge limits is readily achievable if the MBBR units are operated properly.