

How to Select Industrial Water Reuse and Energy Management Solutions

AAEE Seminar at the 100th NJWEA Annual Conference

May 11, 2015

Atlantic City, New Jersey

PRESENTED BY: Joseph G. Cleary, PE, BCEE Principal

Geosyntec.com

Outline

- What are the Drivers for Reuse?
- Water Footprint and Water Ratios
- Integrated Approach and Water Balance Tools
- Reuse Considerations and Quality Issues
- Treatment Alternatives
- System Design Issues
- Examples (Pharmaceutical & Beverage)
- Summary

- Corporations have Sustainability Goals for Water, Energy and Greenhouse Gases
- ISO 26000 Guidance on Social Responsibility Public Image
- Business/Production Risks Disruption from Droughts and Water Quality Concerns
- Water and Energy Cost Reduction
- Production Increase/New Products

Water Footprint for a Product

- The volume of fresh water used to produce the product summed over the various steps in the production chain
 - Green water footprint rainwater
 - Blue water footprint surface and groundwater
 - Grey water footprint wastewater

Water Footprint Examples

Product	Water Used	Water Used gal/gal	
Apple (One)	18 gal.		
16 oz. Tea	18.5 gal.	148	
Pint of Beer (16 oz.)	40 gal.	320	
16 oz. Diet Cola	33 gal.	264	
16 oz. Coffee	37 gal.	296	
16 oz. Milk	106 gal.	848	
16 oz. Wine	63 gal.	504	
1 lb. Chicken	467 gal.		
1 lb. Beef	1,857 gal		

Reference: Water Footprint Network (Research by Cranfeld University in UK (2011))

Geosyntec.com

Water Use Ratio (in a Facility)

$WUR = \frac{Total \, Water \, Used}{Total \, Beverage \, Production}$

WUR has become common expression for water efficiency

Origin:

- Adopted by United Nations Global Compact
- Global Reporting Initiative voluntary, internationally recognized framework for sustainability reporting that provides the opportunity to measure and report our performance in key sustainability areas
- 2006 Current guidelines launched

2012 Water Stewardship Benchmarking Results

Product	# of Facilities Surveyed	Water Use Ratio L/L	
		2009	2011
Carbonated Soft Drinks	725	2.23	2.02
Bottled Water	131	1.55	1.47
Brewing	296	4.53	4.00
Distillery	80	38.35	34.55
Winery	27	3.78	4.74

Reference: Beverage Industry Environmental Roundtable (BIER), Christianson, T. (2012)

Geosyntec.com

Water Use Breakdown

Reference: Beverage Industry Environmental Roundtable (BIER), Christianson, T. (2012)

- 83 billion gallons water used at 900 bottling plants worldwide – equivalent to double the City of Chicago
- Water use ratio at plants average about 2.4 gallons used per gallon of product
- Water footprint is 70 gallons per gallon of product with most of this water needed to grow the sugar
- Goal is 20 % reduction in water ratio from 2004 to 2012

 they are on target now
- What is next generation of technologies ?

Source: Paul Bowen of Coca-Cola – NJWEA Industrial Seminar (2011)

Comparison Pharmaceutical & Food & Beverage

Similarities

- Drivers
- Regulatory (e.g., EPA, FDA)
- Contact or use of treated water with product is not acceptable
- Water users in facility (e.g., utilities)

Differences

- Active Pharmaceutical Ingredients (APIs) Concerns
- More solvents used in pharmaceutical industry
- High strength wastewaters for energy recovery in food and beverage – more use of anaerobic digestion

Geosyntec.com

- Mobilize a Team include those closest to the problems
- Include production, water utilities, wastewater operators, EHS compliance etc.
- Outside consultant to facilitate and bring broad background at other facilities
- Management and team commitment
- Frequent communications and training

Surface Water or POTW NOTE: All values are in the units of cubic meters per hour (m²/hr)

Reuse System Considerations

Reference: U.S. Water Services – Gary Engstrom (September 2013)

Key Target Water Users at Plants

- Pharmaceutical & Food & Beverage
- Cooling Towers
- Scrubbers for Air Pollution Control
- Chillers, Boilers and HVAC (Air Handling Condensates)
- Lawn Sprinklers/Irrigation
- Cleaning Water for Clean-in-Place Systems, etc. (e.g., tanks, bottle washing)
- Cafeteria
- Washrooms and showers
- Other Water Users Laboratories etc.
- Food
- Fluming or transport (e.g., tomatoes & beans)
- Pork (e.g., spraying & cooling of livestock, scalding tubs & washing of animals)

Reuse Water Considerations

- Fouling Heat Transfer Loss, Plugging
 - Iron (Fe)
 - Silica
 - Organics
 - Dirt, Dust, TSS
 - Extracellular Polysaccharides (EPS)
- Microbiological Fouling
 - Potential Pathogens (LP)
 - Nutrients NH₃, P
 - TOC/BOD Food

Reuse Water Considerations

• Scale – Heat Transfer Loss, Plugging

- Calcium (Ca)
- Magnesium (Mg)
- Barium (Ba)
- Strontium (Sr)
- Carbonate $(CO_3^{=})$
- Phosphate (PO_4^{-3})
- Sulfate $(SO_4^{=})$
- Silicate $(SiO_2^{=})$
- Corrosion Equipment Life (Metallurgy)
 - Total Hardness (Ca, Mg)
 - Manganese (Mn) Mild & Stainless Steel
 - M-Alkalinity
 - Fouling
 - pH
 - Chloride (Cl⁻) Stainless Steel
 - Ammonia (NH₃) Copper (Cu), Admiralty Brass

Treatment Alternatives

- Flow Equalization
- pH Control
- Screening
- Oil and Grease (D.A.F.)
- Primary Clarification
- Anaerobic Treatment
- Activated Sludge and MBRs
- UF and RO
- UV Disinfection

Non-Potable Reuse: Industrial Reuse

Geosyntec.com

Pharmaceutical Plant Rainwater Harvesting

60% Reduction in City Water Use Business Risk Driver on Water Supply Available

Beverage Plant Water Reuse Zero Liquid Discharge (ZLD)

Geosyntec[▶]

consultants

Parameter	Unit	Evapco/Carrier Water Quality Guidelines	Required Makeup Water Quality (at CoC=3) with safety factor = 20%
pН	su	7 - 9	7 - 9
TSS	mg/L	< 25	6.7
Conductivity	umhos/cm	< 4,000	1067
Alkalinity as			
CaCO ₃	mg/L	< 350	93
Chlorides	mg/L	< 500	133
Silica	mg/L	< 150	40
Total Bacteria	cfu/ml	< 10,000	2667
Iron Oxides	mg/L	< 1.0	0.27
Ammonia	mg/L	< 0.5	0.13

Alternative	Description	Total Capital (\$ Millions)	Total Annual O&M (\$ Millions)	Total Present Worth ¹ (\$ Millions)
1	UF/MF + RO (Two-Pass)	1.33	0.23	2.95
2	Disk + Cartridge Filters + RO	0.95	0.12	1.82
3	Filtration/Softening	0.39	0.23	2.01

¹ Based on 7%, 10 years

Distillery - Non-Process Control Strategies

Alternative 1b - EQ + Chemical Pretreatment + MF + RO + UV (Divert MF Peremeate to Seal Water System, RO only for CT Make-Up Water)

Pork Manufacturing Plant Water Reuse

- 3.5 MGD water usage 33 % reused for non-potable uses including: livestock spraying/cooling, inedible rendering, utilities, carcass washing, scald tubs and cooling water
- Approval for water reuse USDA, EPA and FDA
- Reconditioned process water criteria was established: pH, turbidity, fecal coliform, total coliform, total plate count, chlorine residual and TOC
- Process wastewater plant activated sludge
- Advanced or reconditioned water plant conventional water treatment processes including UV disinfection

- Use the Integrated and Collaborative Team Approach
- Serious droughts in CA, AZ, Texas and Georgia and are not going away
- Corporations benefit from social, economic and environmental (triple bottom line) evaluations
- Industries have different issues but similar water reuse approaches and technologies
- Technologies are proven and available the Time is Now!

Questions?

