Ferrate(VI) as a New Water Treatment Agent for Wastewater Reuse

Yang Deng (Associate Professor, PhD, PE) Nanzhu Li (PhD candidate)

Department of Earth and Environmental Studies Montclair State University, Montclair, NJ

Green Treatment Reagent

- One chemical, multiple functions;
- Non-toxic final products;
- No production of DBPs

Objective

 To evaluate ferrate(VI) for advance treatment of secondary effluent

- Specifically,
 - Fe(VI) decay in secondary effluent
 - Characterization of Fe(VI)-induced particles
 - Removal effluent organic matters (EfOM)
 - Removal nutrients
 - Removal emerging contaminants

Experimental

- Jar tests
- Secondary effluent was collected from a local WWTP
- In a typical run, rapid mixing (150 rpm) followed by slow mixing (30 rpm)

Fe(VI) Decay in Secondary Effluent

 $(Fe(VI) = 54 \ \mu M \ (3 \ mg/L \ Fe), \ pH = 8.5)$

 $(Fe(VI) = 54 \mu M (3 mg/L Fe), pH = 8.5)$

Settleability of Fe(VI)-induced Particles

Settleability of Fe(VI)-induced Particles

Z-average size of Suspended Fe(VI)induced Particles

EfOM (no pH control)

 $(COD_0 = 32 \text{ mg/L}; \text{ Initial UV}_{254} = 0.135; \text{ initial pH} = 8.5)$

Nutrient

 $(TP_0 = 4.68 \text{ mg/L}; TN_0 = 19.6 \text{ mg/L})$

Emerging contaminants

Conclusion

 Fe(VI) decay in secondary effluent is a 2nd order reaction;

 Suspended particles and EfOM enhanced Fe(VI) decay (the former might be due to surface catalysis, while the latter is due to its reaction with Fe(VI)

Conclusion

- After Fe(VI) oxidation, Fe(VI)-induced particles were mostly suspended, increasing water turbidity. These particles ought to be removed in the following treatment
- Fe(IV) preferentially reduced UV254, instead of COD
- TP and emerging contaminants were readily removed

New Jersey Water Resources Research Institute

Montclair State University New Faculty Start-Up Grant

Any Question?

dendy@mail.montclair.edu