Enabling Extractive Nutrient Recovery – A Disruptive Nutrient Management Strategy for a Circular Economy

Wendell O. Khunjar, PhD, PE Ron Latimer, PE

Sam Jeyanayagam, PhD, PE, BCEE

Amit Pramanik, PhD, BCEEM

Acknowledgments

- Joe Rohrbacher, PE Hazen and Sawyer
- Vivi Nguyen Hazen and Sawyer
- Ron Latimer, PE– Hazen and Sawyer
- Paul Pitt, PhD PE Hazen and Sawyer
- Chirag Mehta, PhD University of Queensland, Australia
- Damien Batstone, PhD University of Queensland, Australia

- Tim Muster, PhD CSIRO
- Stewart Burns, PhD CSIRO
- Ron Alexander R. Alexander Associates Inc
- Glen Daigger, PhD, PE, BCEE CH2M
- Todd Williams, PE, BCEE CH2M

Nutrient planetary boundaries are being exceeded due to increased anthropogenic inputs

Nutrient usage cycle currently assumes an unlimited supply of resources and energy

- Phosphorus is a NON-renewable resource
- Phosphorus resources are declining both in quality and accessibility

Nutrient recovery facilitates the recycling of reactive nutrients

How do we facilitate a transition to nutrient recovery?

Technical, economic and regulatory limitations restrict implementation

Addressing Technical Considerations

From a technological perspective, a three step framework may be appropriate

Accumulation

- Enhanced biological phosphorus removal (EBPR)
- Algae
- Purple non-sulfur bacteria
- Adsorption/lon exchange
- Chemical precipitation
- NF/RO

Anaerobic digestion

Release

- Aerobic digestion
- Thermolysis
- WAS release
- Sonication
- Microwave
- Chemical extraction

 Chemical crystallization

Extraction

- Electrodialysis
- Gas permeable membrane and absorption
- Gas stripping
- Solvent extraction

- Not all systems require all three components
- Can optimize each option separately
- Can also stage implementation

Consider a common scenario in which enhanced biological phosphorus removal is applied

		N (% ۱	lutrient recovery efficient	very ciency)	Product
		N	Р	K	(% wt nutrient)
Accumulation	EBPR	-	√ (15-50%)	-	Sludge (5- 7% P)
Release	Anaerobic digestion	\checkmark	\checkmark	\checkmark	Biosolids
Extraction	Crystallization	\checkmark	√ (> 90%)	\checkmark	Mg-Struvite (12% P, 5% N), K-struvite, Fe or Ca phosphate
					·
MR396					

Intentional struvite recovery helps minimize nuisance struvite formation and reduce P recycle

There are several commercial options for struvite recovery

Name of Technology	Pearl®	Multiform Harvest™	NuReSys™	Phospaq™	Crystalactor™	Airprex™
Type of reactor	upflow fluidized bed	upflow fluidized bed	CSTR	CSTR with diffused air	upflow fluidized bed	CSTR with diffused air
Name of product recovered	Crystal Green ®	struvite fertilizer	BioStru®	Struvite fertilizer	Struvite, Calcium-phosphate, Magnesium-phosphate	Struvite fertilizer
% Efficiency of recovery from sidestream	80-90% P 10-40% NH3-N	80-90% P 10-40% NH3-N	>85% P 5-20% N	80% P 10-40% NH3-N	85-95% P for struvite 10-40% NH3-N > 90% P for calcium phosphate	80-90% P 10-40% NH3-N
# of full-scale installations	8	2	7	6	4	3
MR396						

Ostara Pearl™

Multiform Harvest

Crystalactor®

Paques Phosphaq[™]

Enhanced biological phosphorus removal, anaerobic digestion & nutrient recovery

What about if we use chemical precipitation for mainstream P removal?

		N (% r	lutrient reco ecovery effic	Product	
		N	Р	K	
Accumulation	Chemical (Precipitation)	\checkmark	√ (> 90 %)	-	Sludge
Release	Anaerobic digestion	\checkmark	-	\checkmark	Biosolids

20

Release via Anaerobic digestion solubilizes limited amount of P

Extraction	Acidification or bioleaching followed by crystallization, liquid extraction , ion exchange	\checkmark	\checkmark	\checkmark	Struvite; diammonium sulfate (DAS), iron phosphate, phosphoric acid, calcium phosphate, biosolids

There are options to allow us to recover nutrients from sludge

Name of Process	Seaborne	Krepro	PHOXNAN		
Product recovered struvite; diammoniur sulfate (DAS)		iron phosphate as a fertilizer	phosphoric acid		
Process feedstock	sludge	sludge	sludge		
		5% DS			
 Installation Sweden Regulatory recycling P 	of Krepro in mandate for is needed to	ixture tank	Reactor		

Chemical precipitation, anaerobic digestion and nutrient recovery

What about if we use have thermochemical stabilization (i.e., incineration)?

		N (% I	Nutrient recovery efficient	very ciency)	Product
		N	Р	K	
Accumulation	Biological or Chemical		√ (> 90 %)	-	Sludge
No relea	se exists so P i	s boun	d into ash	-Ca	
Option 1 - Release and Extraction	Enhanced WAS Lysis and crystallization	-	√ (20 to 50%)	\checkmark	Sludge
Option 2 - Release and Extraction	Acidification of ash followed by crystallization, liquid extraction , ion exchange	\checkmark	\checkmark	\checkmark	Struvite; diammonium sulfate (DAS), iron phosphate, phosphoric acid, calcium phosphate
MR396					

There are options to allow us to recover nutrients from ash/sludge

Name of Process	SEPHOS	BioCon®	PASH
Product recovered	aluminum phoshate or calcium phosphate (advanced SEPHOS)	phosphoric acid	struvite or calcium phosphate
Process feedstock	sewage sludge ash	sewage sludge ash	sewage sludge ash

- Post-processing to remove heavy metals may also be required
- Few full-scale installations are present
- Regulatory mandate for recycling P is needed to drive implementation of these technologies
 - Ash can also be considered as direct fertilizer amendment
 - Consideration needs to be given to the heavy metal content

Enhanced biological phosphorus removal, WAS release & nutrient recovery

Addressing Regulatory Considerations

Nutrient recovery is another strategy for removing P from WRRF

Quantifying other benefits (cost and non-cost) can help make the case for nutrient recovery

Struvite recovery can:

- Provide factor of safety associated with Bio-P
 - Minimizes impact of sidestream return
- Reduce energy and chemical consumption
 - Offsets due to reduction in aeration and supplemental carbon
 - Reduction in sludge quantity and hauling costs
- Minimize nuisance struvite formation and reduce O&M costs
- Reduce or increase the P content of biosolids
 - If land application P index limited, removing P in the form of struvite will shift N:P ratio
 - If more P is appreciated, selectively precipitating P into biosolids will increase biosolids P content

Improve sludge dewaterability

- Result in higher sludge cake %TS
- Reduce polymer demand

Addressing Economic Considerations

Magnesium struvite is the most commonly encountered product

- Closest analogues are mono and diammonium phosphate
- Based on historical pricing, can expect Mg-struvite value to range from \$200 to \$600/metric tonne

Characteristic	Magnesium struvite	Monoammonium phosphate	Diammonium phosphate		
Chemical formula	MgNH ₄ PO ₄ -6H ₂ O	NH ₄ H ₂ PO ₄	$(NH_4)_2HPO_4$		
Average price/metric tonne	\$200 - \$600	\$570 - \$615	\$420 - \$680		
Grade (N-P-K)	5-29-0	11-52-0	18-46-0		
Water solubility at 20 °C	Insoluble - 0.2 g/L	328 - 370 g/L	588 g/L		
Application description	Spread on soil	Normally spread of mixed in soil	Normally spread of mixed in soil		
Typical application rates*	255 lb/A	142 lb/A	160 lb/A		

There are multiple entry points for the nutrient fertilizer market

What are the economics associated with implementing struvite recovery at WRRFs?

Case studies of full-scale facilities available from WERF

NTRY1R12b

Developed case studies in 3 categories

- Category 1 Currently operating or constructing struvite harvesting
- Category 2 Performed desktop analyses and/or pilot
- Category 3 No evaluation but may have piloted

Each case study describes:

- Nutrient limits,
- Plant configuration,
- Challenges faced,
- Drivers for nutrient recovery,
- Economics associated with struvite harvesting,
- Lessons learned where applicable

Plant Designation	Plant 1					
Location	Virginia, USA					
Current Nutrient limits (mg/L)	TN - 8.0 mg/L AA TP - 2.0 mg/L AA These are treatment goals, the utility has a permit for combined effluent from 7 plants discharging in the James River basin.					
Emerging Nutrient limits (mg/L)	Expected 2017 TN reduction to 5.0 mg/L and TP reduction to 1.0 mg/L. Pla to treat with additional supplemental carbon and ferric chloride if needed.					
BNR configuration	5-stage BNR					
Solids management configuration	Primary sludge + GBT co-thickened. Thickened sludge to anaerobic digesters then centrifuged. Cake is hauled and incinerated.					
Biosolids disposal method	Biosolids transported to another plant within utility for incineration					
Mainstream Design flow (MGD)	30					
Mainstream current operation flow (MGD)	18					
Minimum operating temperature (°C)	12					
Effluent nutrient concentrations (June 2011 to February 2013)	TP -1.5 mg/L TN -6.5 mg/L (includes periods with 3 and 5 stage BNR)					
Sidestream flow (MGD)	0.1					
Sidestream nitrogen concentration (mg/L N)	Before implementation of nutrient recovery: 576 After implementation of nutrient recovery: 448					
Sidestream ortho-phosphorus concentration (mg/L P)	Before implementation of nutrient recovery: 351 After implementation of nutrient recovery: 54					

Tool for Evaluating Resource RecoverY developed to facilitate preliminary evaluation

Compare struvite crystallization with precipitation with coagulant (i.e., alum or ferric)

34

						WERF		Business Case Model Criteria	Business C Benefits	ase Model Selection	
README	Start Page	Summarized Results	d Plant Mass Balance	Capital and O&M Estimate Results	Business Case Evaluation Results		Do Nothing Financial Model Input	Struvite High Estimate Financial Model Input	Struvite Low Estimate Financial Model Input	Ferric Financial Model Input	Alum Financial Model Inpu
e:	Tool	for Evaluating Res	source Reco∨ery Beta Version	6							
ontents:	Fact	sheet describing	struvite crystallization techn	ology			_				
	<u>Osta</u>	<u>ra Pearl</u> <u>M</u>	<u>ultiform Harvest</u>	Procorp/Royal Haskonin	gDHV Crystalactor	_	<u>Nuresys</u>		Paques Ph	ospaq	
	Mode	Ile for estimating	capital and O&M costs ass	ociated with implementing	sidestream P control u	ing struvite	recovery				
	Mode	le for performing	g cost benefit analyses of al	ternatives							
uick reference instructions:	Click	on Start Tab									
	Enter	facility specific da	ta into relevant sections in the	e each worksheet.							
	Theu	ser will be guided	I to enter data in subsequent v	vorksheets using the color o	ode provided in the key b	elow.					
	Theu	ser can navigate b	between worksheets using hyp	erlinks embedded in each v	vorksheet.						
				Data Entry	Instructions						
		G	reen cell requires data e	ntry by user							
		В	lue cell indicates calcula	ted value that should n	ot be changed						
					gou						
etailed Instructions:	Click	here for tutorial for us	sing TERRY (not available in this	version)							
lite as:	Latime	r, R.; Rohrbacher, J do a Renewable Fu	J.; Nguyen, V.; Khun jar, W. O.; tune: Assessing Resource Recou	Jeyanayagam, S. verv. as a Viable Treatment Alte	mative (NTRY1R12) - Tool f	v Evaluating R	acource Recovery	Rata Varcion 1. Wata	r Environment Reces	web Foundation:	2013

Search WERF website for NTRY1R12t

TERRY- P

Who can use this tool?

- Utility managers, research and development personnel
- Consultants
- Regulators
- Students
- Public
- Anyone with interest in nutrient recovery

Why use this tool?

Conceptual level evaluation of nutrient recovery capital and operating cost required

- Helps inform what information is useful for collection
- Informs master planning

Conclusions

Quantifying other benefits (cost and non-cost) can help make the case for nutrient recovery

Struvite recovery can:

- Provide factor of safety associated with Bio-P
 - Minimizes impact of sidestream return
- Reduce energy and chemical consumption
 - Offsets due to reduction in aeration and supplemental carbon
 - Reduction in sludge quantity and hauling costs
- Minimize nuisance struvite formation, reduce O&M costs and regain capacity
- Reduce or increase the P content of biosolids
 - If land application P index limited, removing P in the form of struvite will shift N:P ratio
 - If more P is appreciated, selectively precipitating P into biosolids will increase biosolids P content

Improve sludge dewaterability

- Result in higher sludge cake %TS
- Reduce polymer demand

Next steps for nutrient recovery industry

- Understand true costs/benefits of operating recovery facilities
- Enhance recovery potential of existing facilities
- Explore recovery of other products
- Implement technologies that facilitate multiple benefits
 - P, N, K Carbon, Energy

Questions and Contact Information

39

Wendell Khunjar Hazen and Sawyer, P.C. wkhunjar@hazenandsawyer.com

Ron Latimer Hazen and Sawyer, P.C. rlatimer@hazenandsawyer.com

Sam Jeyanayagam CH2M Samuel.Jeyanayagam@ch2m.com