

ECONOMICS OF PHOSPHORUS RECOVERY

Dave Kinnear

Gary Grey, Mario Benisch, JB Neethling, David Vaccari

FSS

© 2015 HDR, Inc., all rights reserved.

INTRODUCTION

- Environmental Science Stockton State College
- Environmental Engineering Penn State, Lehigh, Utah
- Technology-Driven Engineer
- Environmental Engineering Gent University, Belgium
- Economics ruined engineering career

Phosphorus and Drivers

The Bet

- **Commodity Production**
- Technology Change

5 HRSD Economics

6 Conclusions

01 PHOSPHORUS AND DRIVERS

PHOSPHORUS

- Essential to life...yada yada
- Production 158 Mt/yr (USGS)
- Reserves 16,000 Mt (USGS 2010)
- Reserves 60,000 Mt (IFDC)
- Resources 290,000 Mt (IFDC)
- Technology and Price convert Resources into Reserves in time.
- Why prospect for 300 years in future?

PEAK PHOSPHORUS

- Same concept as peak oil we are soon going to reach a supply-side plateau.
- Peak oil will occur but likely due to reduced demand as renewable sources become available at lower price (without subsidies).
- Will something similar happen for P?
 P has no substitute or does it?

SIMON-EHRLICH WAGER

- Ehrlich Malthusian Stanford ecologist. *Author of Population Bomb*.
- Simon Business Professor at Maryland
- Bet whether a basket of commodity metals would increase or decrease in real dollars over the 1980s decade.

DIAMMONIAUM PHOSPHATE PRICE

Description: DAP (diammonium phosphate), standard size, bulk, spot, f.o.b. US Gulf

WWTPS COMPETE WITH COMMODITY PRODUCERS

- Nitrogen ammonia (HB)
- Phosphorus MAP (Mining)
- Energy Methane or Electricity (Fracking, Power, Solar)
- More unit capital required due to limited economy of scale

ENERGY REQUIRED FOR N FIXATION

LAZARD'S LEVELIZED COST OF ENERGY ANALYSIS-VERSION 8.0

Unsubsidized Levelized Cost of Energy Comparison

Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under some scenarios; such observation does not take into account potential social and environmental externalities (e.g., social costs of distributed generation, environmental consequences of certain conventional generation technologies, etc.) or reliability-related considerations (e.g., transmission and back-up generation costs associated with certain Alternative Energy generation technologies)

Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system

Damar Lizbeth López-Arredondo & Luis Herrera-Estrella

Affiliations | Contributions | Corresponding author

Nature Biotechnology **30**, 889–893 (2012) | doi:10.1038/nbt.2346 Received 07 May 2012 | Accepted 01 August 2012 | Published online 26 August 2012

04 HRSD NANSEMOND PLANT

Struvite Facility Cost

C. Bott - HRSD

COST REVIEW

	Option 1 Side Stream Treatment Cost Estimate	Option 2 Original Ostara Cost Estimate	Ostara CY 2013 Actual Costs	Ostara CY 2014 Projected Costs
Product Sales		165,000		111.900
Annual Operating Costs	(514,800)	(88,800)		(86,600)
Annual Debt Service*		(425,300)		(425:300)
Net Annual Operating Costs**	(559.000)	(349,100)		(400.000)

* Sunk costs for Side Stream option

** Side Stream Net Annual Operating Costs adjusted to 2013 \$

20

PRODUCT PRODUCTION/SALES

HRSD AND OSTARA'S AGREEMENT

- 10-year contract with Ostara to purchase all product produced at the facility with increases to purchase price based on the CPI. KEY
- HRSD compensated for labor, materials and operating costs.
- Ostara provided the equipment and process oversight.
- HRSD retains ownership of the building and equipment after contract expires.
- Ostara markets and distributes the fertilizer product under the name as CrystalGreen[™]. HRSD's name is not used on any packagi²fg.

- Peak P may be demand side driven as efficiencies are found.
- Does S-E wager apply to P?
- HRSD driver = least expensive P removal technology.
- Ą

5

B

9

2

- Ostara at HRSD cost \$5.6 M and costing \$0.5 M/yr to operate (including debt).
- Will sunken capital pan out compared to higher operating cost of sidestream?

ECONOMICS OF PHOSPHORUS RECOVERY

Dave Kinnear, Gary Grey, Mario Benisch, JB Neethling, David Vaccari, Charles Bott

F

© 2015 HDR, Inc., all rights reserved.

