Towards a zerocost-biorefinery using a new nutrient recovery model library and global sensitivity analysis

Céline Vaneeckhaute, Ph.D. Ph.D. ir. celinevaneeckhaute@gmail.com www.selowenvironment.com

Outline

INTRODUCTION

SeLow - Sustainable energy Low waste

3

Why recovering nutrients?

Nutrient recovery processes

- Precipitation → struvite, calcium phosphates
- Ammonia stripping $\rightarrow NH_3$
- Acidic air scrubbing → ammonium sulfates

tration $\rightarrow H_2O$, N-K concentrates tion and harvest \rightarrow biomass

⇒ Mainly physicochemical unit processes!

Points of attention

- The nutrient recovery process must have equivalent treatment efficiency as conventional treatment
- The process must be cost-effective
- The process must be simple to operate and maintain
- There must be a market for the recovered nutrient products

Potential flow diagram of a WRRF

Problem: Optimal combination different for each waste flow

<u>Question</u>: What is the optimal combination of unit processes and operating conditions?

- Given: Particular waste stream
- > Optimal:
 - Maximal resource recovery (nutrients, energy)
 - Minimal energy and chemical requirements

Approach = Mathematical models

Modeling challenges

⇒ Insights in chemical speciation required for fertilizer quality optimization

Modeling challenges

Selo

Modeling challenges

Existing WWTP models

WRRF models

⇒ Lack of models to adequately put together optimal treatment trains for nutrient recovery and to select the optimal operating conditions

OBJECTIVES

SeLow - Sustainable energy Low waste

11

Project: Industrial Innovation Scholarship (BMP, 2013-2015)

- Ph.D. Céline Vaneeckhaute (2015): Nutrient recovery from bio-digestion waste: From field experimentation to model-based optimization
- Supervisors:

Peter Vanrolleghem (model*EAU*), Evangelina Belia (Primodal), Filip Tack & Erik Meers (Ghent University)

Fonds de recherche Nature et technologies QUÉDEC 🏘 🕸

Project: Industrial Innovation Scholarship (BMP, 2013-2015)

- Specific research objectives:
- 1. To develop generic models for the best available resource recovery systems including:
 - detailed chemical speciation
 - biological and physicochemical reaction kinetics
 - interactions between three phases (liquid-solid-gas)
- 2. To apply the models as a tool for optimization of single processes and treatment trains in order to:
 - maximize resource recovery (nutrients, energy) + product quality
 - minimize energy and chemical requirements

MODEL DEVELOPMENT AND VALIDATION

Model development Generic nutrient recovery model library

Model development Numerical solution

Model development Important findings & contributions

- Geochemical databases incomplete:
 Extended database for putricet recovery
 - Extended database for nutrient recovery, e.g., (NH₄)₂SO₄, AlPO₄, ... (Nutricover.dat)
- Speed-up of model simulations:
 - Selective database reduction
 ⇒ Speed X 4-5
 - Tight model coupling
 - \Rightarrow Speed X 10

⇒ Highly efficient and practically implementable models!

Model calibration & validation

Model validation: NRM-Prec Process lay-out

Source: adapted from Ostara (2015)

Model validation: NRM-Prec Lab-scale experiments

Model validation: NRM-Prec Experimental vs. simulation results (12 h)

Mg:P	Digestate 1 % P-recovery			Digestate 2 % P-recovery	
?	Experim.	Original PHREEQC	Extended PHREEQC	Experim.	Extended PHREEQC
1:1	41	95.60	41.32	28	27.76
2:1	44	97.91	43.62	29	29.29

 \Rightarrow Very good prediction of P-recovery at steady state

⇒ Importance of a detailed chemical solution speciation and accurate input characterization!

Scenario analyses: NRM-Prec

Main components precipitated: AI, Ca, Fé K, Ng, N, P
 very high Fe and AI in influent
 → optimal P-recovery = 56.2 %
 → optimal P-recovery = 90.7 %

(Co-)precipitate	Digestate 1	Digestate 2
FeAl ₂ O ₄	+	-
AlPO ₄	-	+
Fe ₃ (PO ₄) ₂ :8H ₂ O	-	+

How to maximize nutrient recovery and guarantee fertilizer purity?

Scenario analyses: NRM-Prec

• Practical recommendations (if struvite is target):

GLOBAL SENSITIVITY ANALYSIS AND PROCESS OPTIMIZATION

Model application for process and treatment train optimization

Global sensitivity analysis (GSA)

 Selection of factors with highest impact on model outputs (= objective for further study)

Optimal treatment train configuration

GSA results: NRM-AD Effect of Fe on H₂S- and CH₄-production

⇒ Use of models for process and product quality optimization & control
⇒ Importance of species and precipitate modeling + input characterization!

GSA results: NRM-Prec *Effect of temperature on P-precipitation*

GSA results: NRM-Strip *Process lay-out*

Source: adapted from Colsen (2015)

GSA results: NRM-Strip Impact of chlorides on NH₃-recovery efficiency

Treatment train configuration

OPTIMAL OPERATING CONDITIONS?

Treatment train optimization

Treatment train optimization *Economic analysis*

Variable costs & revenues

- Heat requirements → worst & best case
- Chemicals
- Electricity
- Maintenance, material & labor costs
- Biogas production \rightarrow electricity and heat
- Fertilizer marketing → worst & best case
- CO₂ emission reduction credits: 15 \$ ton⁻¹

Capital costs

- Technology providers
- CAPDET software

Treatment train optimization Case-study

CONCLUSIONS

Conclusions

- WRRF modeling challenges:
 - Integration of detailed chemical speciation and physico-chemical reaction kinetics in existing (biological) models
 - Generic models for nutrient recovery technologies?
 - Numerical solution?

Conclusions

• WRRF modeling advances:

- Generic nutrient recovery model (NRM) library created
- Efficient numerical solution strategy developed
- Default parameters + proper input characterization
 good agreement with steady state experimental results
- Global sensitivity analysis

➔ optimal treatment train configuration

 Treatment train optimization → potential for ZeroCostWRRF
 BUT if integration in existing WWTP: need for overall optimization!

Acknowledgements

References

- Colsen, 2015. AMFER Nutrient recovery process lay-out, available from: http://www.colsen.nl/csn-prod&serv/en/amfer-en-flyer.pdf
- Ostara, 2015. Pearl Nutrient recovery process lay-out, available from: http://services.ostara.com/weftec/downloads/Ostara_Pearl10Kbrochure_web.pdf
- Vaneeckhaute, C., 2015. Nutrient recovery from bio-digestion waste: From field experimentation to model-based optimization. Joint PhD thesis, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, and Faculté des Sciences et de Génie, Université Laval, Québec, Canada.

THANK YOU FOR YOUR ATTENTION

QUESTIONS ?

SeLow - Sustainable energy Low waste

40