Wastewater Global Service Team

ch2m:

Nutrient Recovery from Sewage Sludge Incinerator (SSI) Ash by **Todd Williams, P.E.**

May 16, 2016

Nutrient Recovery from Sewage Sludge Incinerator (SSI) Ash

Acknowledgements: Peter Burrowes, P. Eng., CH2M

Residuals Resource

HE

Recovery

Agenda

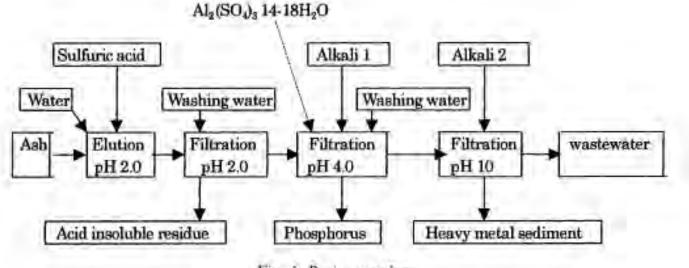
- Overview of Nutrient Recovery from SSI ash
- Research status
- Promising technologies
- Summary

Introduction

- With ever increasingly stringent nutrient emission limits in the wastewater from Water Resource Recovery Facilities (WRRF), wastewater engineers are faced with the challenge of reducing nutrients in the effluent.
- Techniques for reducing phosphorus include biological phosphorus removal (BPR) and chemical removal.
- In both cases, phosphorus, sequestered in the sludge, may be processed to produce biosolids or incinerated to produce an ash.
- While processes to recover phosphorus are well established, processes for recovering phosphorus from ash are not well known
- With a large proportion of existing SSIs in the U.S. located in New Jersey, there is an opportunity move SSI from an energy recovery technology to a resource recovery technology.

Why consider recovering P from SSI Ash?

- Unlike dewatering centrate, P is concentered in SSI ash
- SSI ash mainly consists of SiO₂, P_2O_5 , Fe_2O_3 and CaO.
- P can be beneficially used as a fertilizer
- SSI ash also contains heavy metals which must be removed from the final fertilizer product


Elemental Analysis of Ash %				
SiO ₂	23.51	26.73	21.34	26.52
AL ₂ O ₃	8.16	8.49	9.31	8.64
TiO ₂	1.28	1.38	1.43	1.49
Fe ₂ O ₃	12.21	9.65	10.16	10.06
CaO	12.2	12.8	14.6	13.4
MgO	5.75	6.41	6.36	6.56
Na₂O	1.33	1.38	1.43	1.41
K ₂ O	3.44	3.01	3.24	3.00
P ₂ O ₅	27.12	25.52	24.8	25.63
SO₃	0.05	0.93	1.5	1.18
Cl	0.02	0.02	0.04	0.02
CO ₂	0.04	0.21	0.23	0.21

Development of P recovery from SSI Ash

- On-going work in Europe and Japan
- Japanese research undertaken at Chuo University, Tokyo
 - Showed ability to recover P from SSI ash, using an Enhanced Biological Phosphorus Removal laboratory rig.
- European research presented at 2 conferences in 2009
 - Conference on Nutrient Recovery from Wastewater Streams in Vancouver (Canada) in May 2009
 - Baltic 21 Phosphorus Recycling and Good Agricultural Management Practice, Berlin September 2009

Japanese Study (published 2001)

- Bench-top study of P recovery from SSI ash
- Used sulfuric acid extraction, followed by alkali addition and filtration
- More than 90% of P in ash was recovered
- · Heavy metals from acid addition were also separated from the P

German National Research & Development Initiative

"Recycling management of plant nutrients, especially phosphorus"

Iaunched 2005

Federal Ministry of Education and Research

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Coordination

- Project Management Agency Forschungszentrum Karlsruhe, Water Technology and Waste Management Division
- German Federal Environment Agency

runtime: 2006 - 2011

German National Research & Development Initiative (continued)

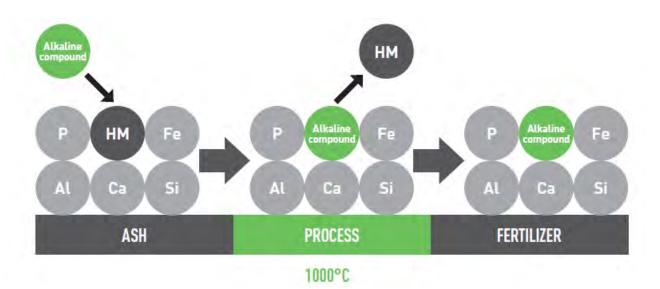
Technical cooperative projects (1/2)

- PASH: Recovery of plant nutrients, especially phosphorus from sewage sludge ash
 - RWTH Aachen University
 - Aachen University of Applied Sciences,
 - ATEMIS GmbH

► PHOXNAN: Optimised phosphorus recycling from wastewater sludge

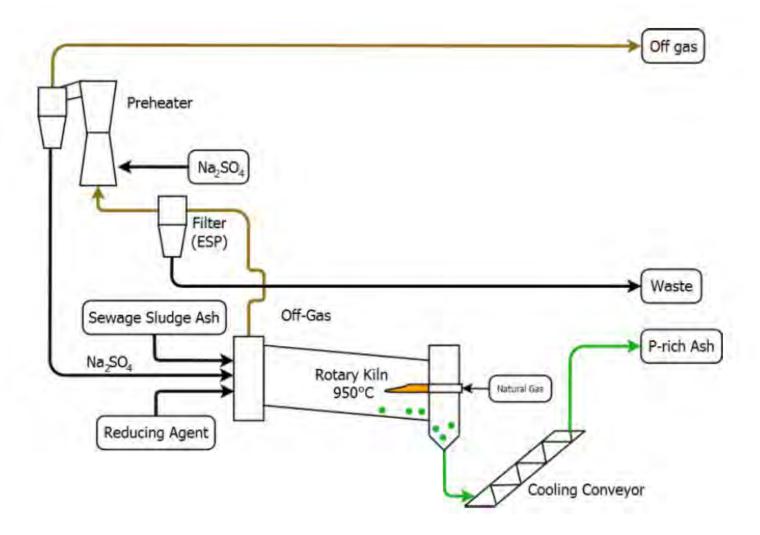
- by the combination of low pressure wet oxidation and nanofiltration
 - Bayer Technology Services
 - RWTH Aachen University

PROPHOS: Phosphorus recovery from wastewater, sewage sludge and incineration ash


- Darmstadt University of Technology
- University of Karlsruhe
- Gottfried Wilhelm Leibnitz University Hannover
- RECYPHOS: Phosphorus recycling Substainability contribution to decentral wastewater treatment
 - TU Dresden
 - BTU Cottbus
 - Bergmann Waste Water Engineering
- PHOSIEDI: Phosphorus Recovery using Ion-Exchange and Electrodialysis
 - University of Karlsruhe

Summary of P Recovery Technologies/Research on SSI Ash

- Japanese Sulfuric acid extraction and alkali addition/filtration
- European
 - AshDec (discussed following)
 - PASH (discussed following)
 - Biocon
 - Prophos


Residuals Resource Recovery

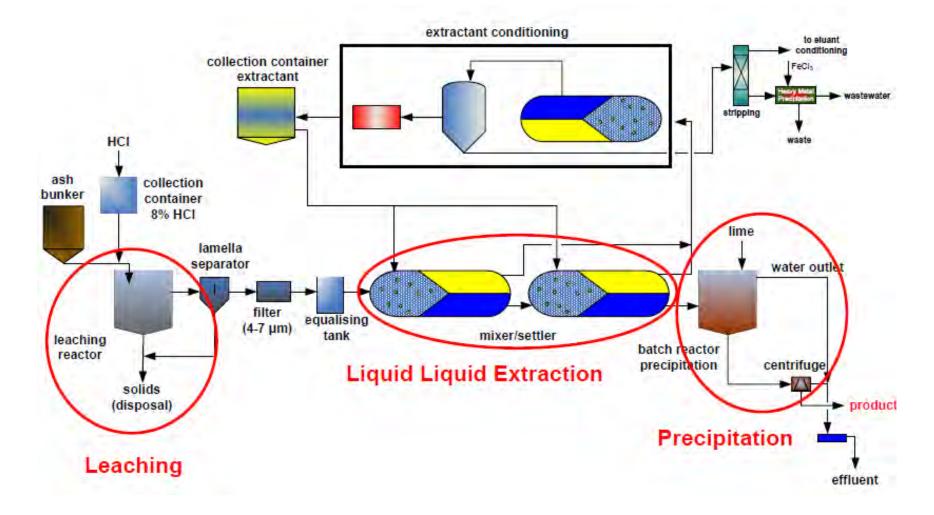
The ASH DEC Process

- uses thermo-chemical treatment to produce renewable phosphate for fertilizer production
- includes mixing of ashes and chlorine donors and subsequent treatment in rotary kiln for 20 min at temperature of 900 – 1,050 °C
- the heavy metals evaporate and P-rich product is obtained
- the toxic substances are retained in air pollution control system in the form of mixed metal hydroxides

The ASH DEC Process

Agricultural Aspects of Thermo-chemical Product

- Highly bioavailable Mg-phosphates are formed when MgCl2 used as Cl-donor
- Fertilization performance of those ashes are close to superphosphate
- Lower yield when $CaCl_2$ used as CI-donor \rightarrow post processing expedient
 - addition of a completely digested P (i.e. TSP) improves agricultural performance (dry matter yield and P-uptake)
 - like partial digestion with H₃PO₄, amendment of TSP results in chemical transformation of treated ash → brushite becoming dominating crystalline structure
- P availability in plant experiments was reflected best by extraction with alkaline ammonium citrate


ASHDEC - Status

- Pilot tested at 7 t/d ash
- Outotec own the process and are reported to be building a P recovery plant
- The minimum size of plant offered by Outotec is 15,000 mt/yr ash or about 140 t/d dry solids to incineration
- Costs are unknown

PASH Process – Phosphorus recovery from Ash

- Wet chemical process developed at RWTH Aachen University
- P is extracted from SSI ash by acid leaching with HCI
- P is precipitated from the acidic solution by increasing the pH with lime
 → main constituents are calcium- and aluminum- phosphates
- investigations in laboratory and pilot scale
- P-recovery potential of 90%
- costs: approx. \$3.50/kg P recovered

PASH Flowsheet (Simplified)

ch2m

Status of PASH

- PASH has been pilot tested
- Waiting to be commercialized
- Projected cost is approx. \$3.50/kg P

Summary

- SSI ash contains P which has been concentrated
- P recovery from SSI ash has been pilot tested, however, the only fullscale technology offered is ASHDEC by Outotech
- Recovery of P from SSI ash provides a future opportunity to recover a valuable fertilizer nutrient and recycle it into the environment
- Likely, there will need to be regional facilities to make the recovery more affordable.

Wastewater Global Service Team

ch2m:

QUESTIONS?

Nutrient Recovery from Sewage Sludge Incinerator (SSI) Ash ^{by} Todd Williams, P.E. todd.williams@ch2m.com

May 16, 2016