NJWEA 101st Annual Conference & Exposition

Alternative Methods on Struvite Control

K. Ramalingam¹, J. Fillos¹, A. Alleyne¹, D.Halim¹, M.Orpianesi², A. Deur² ¹City College of New York ²New York City Department of Environmental Protection

> The City College of New York

An Evolving Mandate for Water Agencies

A New Model is Put Forth

• Which Resources Do We Target?

Resource Neutrality Represents Just One Element of the Roadmap

Resource Intensity Reduction

Community Quality of Life

Diversified Revenue Base

<text>

http://www.nacwa.org/index.php?option=com_content&view=article&id=1604&Itemid=250

Transitioning to Resource Recovery

Waste Water Treatment Plant \rightarrow Water Resource Recovery Facility

 Innovative Approaches to Treatment Critical to Success of the Transformation

Resource Intensity Reduction	1
Community Quality of Life	1
Diversified Revenue Base	1

The Road to the Utility of the Future Is Highly Organization/Locality Specific

As a Water Resource Recovery Facility : Water-energy-nutrients nexus

Struvite as a nuisance? Contrasted to Struvite as nutrient recovered?

Background Information on Struvite

□ Magnesium, Ammonium and Phosphate (MAP) Mg²⁺ + NH₄⁺ + PO₄³⁻ + $6H_2O \longrightarrow MgNH_4PO_4.6H_2O$

UWhite, yellowish white, or brownish white in color

26 Ward WWTP ANAMMOX MBBR Pilot

Struvite Precipitation at the Municipal WWTPs

Struvite Formation can be seen at Municipal Wastewater Treatment Plants

Centrate Return Line

Centrifuges

Separate Centrate Treatment Aeration Tanks

Source of Struvite at the Municipal WWTPs

□ The potential for struvite precipitation originates in the anaerobic digesters.

The two methods compared in this study

- **C**: Struvite Control by using Ferric Chloride Addition
- **C**: Preferential Precipitation of Struvite through Aeration

Struvite Formation Control Methods

Struvite formation control by adding Ferric Chloride

Precipitate PO₄³⁻

Mg²⁺ , NH₄⁺ , PO₄³⁻

Decrease the pH of the sludge

Increase the struvite solubility 1

Alternative Struvite control method:

Preferential precipitation of struvite from anaerobically digested sludge by air stripping the CO_2 .

- Raise the pH 1
- Decrease the struvite solubility

Precipitate Struvite

 Mg^{2+} , NH_4^{+} , PO_4^{3-}

Effect of pH on Struvite Formation

Struvite formation occurs when the molar concentration product of Mg⁺², PO₄⁻³, and NH₄⁺ exceeds the conditional solubility product (pK_{so})

 $pK_{so} = -\log([PO_4] [Mg] [NH_3])$

Fig. 2. A comparison of pK_{so} data for struvite over a range of pH values (calculated from data published by Musvoto et al. [37,38], Booram et al. [39], Ohlinger et al. [66]).

James D Doyle et al, Struvite Formation Control and Recovery, Water Research, Volume 36, page 3925-3940, March 2002.

Method 1: Struvite Control by using Ferric Chloride

FeCl₃ Precipitation Reaction

Chemical Precipitation Reaction of Iron

1.
$$Fe^{3+} + PO_4^{3-} \longrightarrow FePO_4 \downarrow$$

2. $2Fe^{+3} + 6HCO_3^- \longrightarrow 2Fe(OH)_3 \downarrow + 6CO_2$

Criteria for Comparison

🗆 pH

Residual PO₄³⁻ concentration

Saturation Index

Saturation Index = $log(IAP) - log(K_s)$

Positive →Over SaturationZero (0) →SaturationNegative →Under Saturation

Summary FeCl₃ Dosing Experiments

Saturation Index ⁽¹⁾ was calculated by Visual MINTEQ.

□ Visual MINTEQ is a chemical equilibrium speciation model.

Saturation Index = $log(IAP) - log(K_s)$

	Untreated Sludge	Average FeCl ₃ Dosage -σ	Average*FeCl ₃ Dosage	Average FeCl ₃ Dosage +σ
рН	7.19	7.00	6.86	6.75
Residual PO ₄ ³⁻ -P (mg/l)	146	60	41	27
pK _s	13.26			
Saturation Index ⁽¹⁾	0.564	0.019	-0.127	-0.293

*

Average operating FeCl₃ dose at Wards Island WRRF: 1.33 ±0.31 Lit. /1000 liters of biosolids (1.33 gal./1000 gal.)

(1) Saturation Index: Positive \rightarrow Over saturated

Negative→ Under saturated

Method 2: Preferential precipitation of struvite by aeration

Struvite Control by Aeration: Full Scale Application

Preferential precipitation of struvite from anaerobically digested sludge by air stripping (CO₂ removal method) is currently applied at full scale in Germany (Berlin) patented with the name of "AirPrex[®]"

Struvite Precipitation by Aeration Procedure

Method 2: Aeration Experiments

Summary Pilot Scale Experiments: No Mg Addition

Aeration Experiment:

□ Air Flow Rate: 30 cfh

□ No external Mg⁺² addition (Mg:PO₄ = 0.48)

*Method 1 Baseline Residual PO₄-P concentration: 27 ~ 60 mg/L

	Untreated Sludge	Aerated Sludge* (120 Minutes)	
Residual PO ₄ ³⁻ -P (mg/l)	159	73.5	
рН	7.05	8.42	
рК _s	13.26		
Saturation Index ⁽¹⁾	0.565	1.055	

(1) Saturation Index Calculated by Visual MINTEQ: Positive \rightarrow Over saturated Negative \rightarrow Under saturated

Summary Pilot Scale Experiments: Mg Addition

Aeration Experiment:

Air Flow Rate: 30 cfh

External Mg⁺² addition Mg/PO₄: 0.99

*Method 1 Baseline Residual PO₄-P concentration: 27 ~ 60 mg/L

	Untreated	Aerated Sludge		
	Sludge	~ 10 minutes	~ 20 minutes	~ 40 minutes
Residual $PO_4^{3-}-P (mg/l)$	206	60	41	27
рН	6.87	7.4	7.65	8
pK _s	13.26			
Saturation Index ⁽¹⁾	0.590	0.826	0.898	0.982

(1) Saturation Index Calculated by Visual MINTEQ: Positive \rightarrow Over saturated Negative \rightarrow Under saturated

Struvite Solubility Limit Curve

Aeration Experiment (12/13/2012): Tall Column, 30 cfh air flow, initial Mg/PO₄ molar ratio 1.25
(1) K. N. Ohlinger, T. M. Young and E. D. Schroeder (1998) Predicting Struvite Formation in Digestion Wat. Res. Vol. 32, No. 12, 3607-3614

Struvite Solubility Limit Curve

Struvite Solubility Limit Curve and **Aeration Experimental Data**

Aeration Experiment (12/13/2012): Tall Column, 30 cfh air flow, initial Mg/PO₄ molar ratio 1.25
(1) K. N. Ohlinger, T. M. Young and E. D. Schroeder (1998) Predicting Struvite Formation in Digestion Wat. Res. Vol. 32, No. 12, 3607-3614

Comparison of Two Struvite Control Methods

	FeCl ₃ Addition	Aeration
Precipitated Form	$FePO_4$ and $Fe(OH)_3$	Struvite
рН	Decrease	Increase
Chemical Addition	FeCl ₃	If needed MgCl ₂
Removal of NH ₃ -N	0 (zero)	45 mg/L NH ₃ -N removed for 100 mg/L PO ₄ -P removed

Benefits of the Struvite Precipitation by Aeration

Recovered struvite can be reused as a slow release fertilizer

 \Box Compared to the FeCl₃ addition, less sludge is produced.

Carbon dioxide stripping technology is well established for optimum design.

Conclusions

- Preferential precipitation of struvite through aeration is not only a controlled process but removes both phosphorus and ammonia thus diminishing their loads to downstream BNR treatment processes.
- The struvite produced is incorporated in the cake formed during dewatering increasing its nutrient capacity.
- Less sludge is produced than the commonly used method of ferric chloride addition. Additionally, it may possibly avoid inhibition to BNR processes that have been typically attributed to ferric addition as a potential cause.
- The technology of carbon dioxide stripping is well established for optimum design while the required equipment is readily available from several vendors.
- There is significant improvement in the dewaterability of the biosolids when supplemental Magnesium is added in the Mg:P ratio above 1 with optimized polymer dosage.

Struvite Harvesting

- At least 36 struvite production facilities worldwide with many in design or construction
- Product has sufficient purity for acceptance into the slowrelease fertilizer market
- Nine technology providers, but only five actively marketing their processes in North America
 - Akwadok
 - Centrisys/CNP
 - Colsen International
 - Multiform Harvest
 - Ostara
 - Paques
 - Remondis Aqua
 - RoyalHaskoning/DHV-Procorp Int.
 - Unitika Ltd.

WATER RESOURCE RECOVERY FACILITIES OF THE FUTURE

Questions

