Trends and Technologies for Energy Management for Industrial and Municipal Projects

Joseph G. Cleary, P.E., BCEE

NJWEA/AAEES Workshop Atlantic City, New Jersey May 8th, 2017

- Introduction
- Anaerobic Digestion Overview
- Technology Choices
- Project Drivers and Trends
- Case Studies
- Lessons Learned
- Summary

- WEF has the Energy Roadmap
- Industry has been doing Energy Recovery from WW for many years using AD
- Industry has Sustainability Goals on Energy, Water, Wastes etc.
- Land Bans are driving food waste to energy projects in CT, MA, CA and this will continue
- Municipal WWTPs are interested in co-digestion
- More P3's evolving with industry and POTWs working together

- COD in the wastewater creates energy
- 5.6 cubic meters methane per pound COD removed
- Methane has 960 BTU per cubic feet versus natural gas at 1030 and propane at 2516
- Sanitary wastewater COD around 500 mg/l
- Industrial wastewater COD can be 50,000 mg/l or 100 times
- 40,000 tons per year food waste can generate 1.2 MW of electricity and 1 Million BTUs heat

Industrial Sector	Number
Beverage	623
Food	310
Pulp and Paper	137
Chemical/Pharmaceutical	107
Dairy/Ice Cream/Cheese	67
Sewage	67
Meat/Poultry/Fish	23
Other	265
Total	1,599

Reference: Chemical Engineering, April 2003

Food Waste!

Pre/Post Consumer

Packaged Waste

Fats/Oils/Greases

Dairy/Beverages

Food Processor Waste

What is Anaerobic Digestion?

- Biological conversion process (oxygen free)
- Organic feedstock consumed by bacteria
- Feedstock material is stabilized
- Byproducts
 - Biogas: 50 75% methane, 25 50 % carbon dioxide, trace gases
 - Digestate
- Commodities
 - Power
 - Recoverable heat
 - Biomethane
 - Soil amendment

Basic Anaerobic Digestion Process

Geosyntec^o

Digesters in the United States

- 2,000 digester installations in the United States and growing rapidly.
- 7,000 digester installations in Germany and growing.

Sacramento, CA

San Jose, CA

Geosyntec[▷]

Case Study – Facility Input/Output

Geosyntec[▷]

- Lower power and sludge production
- Renewable energy produced
- Can reduce greenhouse gas emissions
- Soil amendment produced
- Increased landfill diversion
- Proven technology

- Municipal Wastewater Treatment Plants
 - ~1,500 municipal WWTP using AD for solids stabilization
- Industrial Wastewaters
 - ~200 AD facilities primarily food & beverage production
- Animal Manure Organics
 - ~190 AD facilities for animal manure
- Organics derived from MSW and other sources
 - < 10 AD facilities

Approximately 200 AD facilities in the US are used for digesting organics...

Anaerobic Digester Technologies

Geosyntec[▷]

Anaerobic MBR Simplified Flow Diagram

Geosyntec[▷]

Conceptual Total Solution PFD

Geosyntec[▷]

The Raptor[®] Process

GW&E/Ovivo

- Organic input remains stationary; solids concentration greater than 25%-35%
- No pretreatment of organic waste needed
- Material loaded into gastight building and saturated with percolate
- Batch operation and more labor intensive

Case Studies

- Ridgewood, NJ Co-Digestion of FOG and Biosolids
- Yogurt Whey, NY Co-Digestion and Industrial Pretreatment
- Distillery Wastewater San Juan, Puerto Rico
- Food Waste to Energy, CT

Co-Digestion of FOG at Ridgewood NJ

- Co-Digestion of FOG and Biosolids
- 5 MGD Treatment Plant
- Two trucks per day average 10,000 gallons FOG
- Increased gas production by two to three times
- 240 KV Engine plus solar panels
- Produces 100 % plant power with excess power to grid
- Reduced electrical costs to client over 20 years with no capital
- Financing at no cost to Ridgewood NJ client
- NSU lead DBOF project with HDR doing engineering

Geosyntec[>]

- Expand on current Co-Digestion of Whey at POTW
- Design-Build Anaerobic Pretreatment system for whey volumes in excess of the 25MM gallons per year
- Collect and utilize the produced biogas
- Selected Anaerobic MBR Technology

Geosyntec[▷]

Biogas Utilization Options

- Local uses in facility (heating, boiler)
- Transfer to food
 processor: Boilers
- Conversion to Electricity (CHP engines or other)

- 342 mm BTU/day biogas energy available
- GE Jenbacher engines(2) with a power output of 848 kW each
- More than 5 times the electric power required for the whey treatment plant
- Excess electric power will be exported to the grid
- Heat recovered used to maintain (37 C) digester temperature

Rum Distillery Wastewaters

- CODs over 50,000 mg/l treated
- Anaerobic fixed film process
- Biogas has high sulfur(over 2-3 %) requiring treatment for use in boilers
- Plant gets 50% of energy to run the distillery from the wastewater

Digesters- Quantum BioPower – 2016 Planning

Quantum Biopower is completing construction of a 40,000 ton per year, 1.2 MW Digester – CoGen facility in Southington CT. Online NEXT MONTH Plans to initiate new 3-5 projects in 2016-2017

Geosyntec[▷]

1. Food Waste Processing

40,000 Tons/Year Fats/Oils/Greases Meats Produce Packaged products Bakery Items

- 2. Methane Production Natural process Heat and Mixing Methane created
- 3. Sustainable Energy
 1.2 MW of electricity
 1 MM BTU's of heat
 Southington, CT
- 4. Compost 10,000 tons/year Organic compost Farms & Growers in CT

Wastewater Treatment – Nutrient Recovery

Phosphorus 5 mg/l

10 mg/l

Lessons Learned for All Projects

- Get a good waste and wastewater characterization.
- Consider need and benefits for treatability testing.
- Develop a good design basis with variability in loadings.
- Evaluate and select best technical solution first.
- Evaluate technology providers who can deliver the solution as well as project delivery models.
- Build in flexibility in design for production shutdowns and expandability.

Geosyntec[>]

Summary

- Anaerobic Digestion(AD) has been used for years for biosolids and high strength industrial wastewaters for energy value.
- The trend now is using AD more for co-digestion of FOG, food wastes and organics with biosolids and manure for energy.
- Municipal digesters with excess capacity are being used for FOG and Organics for energy.
- Source separated organics and industrial wastes residuals are also going to new AD systems for energy.
- There are other project drivers including landfill bans in some states.

Closing

Thank you for the opportunity to present.

Name and Location
Joseph G. Cleary, P.E., BCEE Paramus, New Jersey Office 201-940-7210 Office 201-841-1316 Mobile jcleary@geosyntec.com

