Keys to an Effective Wastewater Treatment Plant Energy Audit

Robert Pape, AECOM Jane Atkinson, AECOM

PRESENTATION GOALS

- Relationship between GHG and energy with plant O&M
- Benefits of a coupled energy & mass balance for future:
- Understand the dynamics of baselining a wastewater plant
- Beyond the ECM

Operations, Maintenance & Management

Operations, Maintenance & Management

Maintenance & Energy

Concept of Institutional Controls – Internal

Example 1: Preventative Maintenance

Building HVAC Filters and Motor Inlets

- Although typically small energy consumers, a clogged filter:
 - Results in lower air movement
 - Higher energy draw
 - Many filters add up!
- Dirty motor cooling fan inlets:
 - Allows dust to enter the motor can damage the motor
 - Can reduce motor efficiency

Maintenance & Energy

Concept of Institutional Controls – Internal

Example 2: Corrective Maintenance

Pump efficiencies change over time from curve data

- Pump efficiencies can decrease due to use
 - Worn impeller
 - Bearings

OPERATING PUMP 1 REQUIRES 20% MORE KWH/D COMPARED TO PUMP 2

USE EFFICIENCIES TO DETERMINE MAINTENANCE AND GUIDE OPERATIONS

Concept of System Analysis

To clearly show the relationship between Operations and Energy several concepts need to be introduced:

- Coupling of energy and mass balances
- Baselining
- System Analysis

MASS BALANCE

Historically, wastewater treatment plants were analyzed using only a mass balance.

ENERGY BALANCE BALANCE

The comprehensive analysis incorporates an energy balance with a mass balance

THE FULL BALANCE - BASELINE Converting mass into energy (AND ITS NOT E=mc²)

Configuration CEPT Optimized - Plant Energy Balance

Baseline is the bottom line for analysis

Three examples follow on how energy, and the energy/mass balance coupling is connected to operations

- Squeeze play α
- Digester
 - Prediction
 - Cleaning
- Pumping

Squeeze Play

With KWH, O₂ Demand, Diffuser Type, OTR – Match Airflow and Energy using Alpha and Blower Efficiency

Parameter	Actual	Calculated	% Difference
Airflow (scfm)	150,933	146,526	3%
Energy (Kwh/yr)	38,140,168	39,254,287	-3%

Digester Cleaning

Grit, hairballs, and inerts accumulate in digesters – particularly for combined sewer systems thus requiring periodic digester cleaning.

Mass/Energy Balance can help determine when!

- %VS Destroyed=(18.9+LN(HRT)*13.7)/100 (From M&E 4th Edition) [Equation is general and due to different sludge types (primary, secondary, BNR, etc.) a plant specific correlation should be developed first]
- Reduced %VS destruction
 - Reduces digester gas production
 - Increases sludge for disposal

Cost of Reduced Digester Capacity

OPERATIONS & Energy Pumping

The power of energy monitoring and potential of real-time control

Pumping systems using VFDs takes advantage of the Affinity Laws

*P*1*/P*2 =(*Q*13*/Q*23)

(for friction and flow only)

- Power can be reduced significantly and operating an additional pump can reduce power.
- Real-time power monitoring can help operational energy control.

OPERATIONS & Energy Pumping

OPERATIONS & Energy NYC Audit Example: Benchmarking Operations

Energy End Use Analysis

Hunts Point

26th Ward

Main Sewage Pumping (11%)

- Primary Treatment (4%)
- Secondary Treatment (42%)
- Disenfection (<1%)
- Thickening (2%)
- Digestion (15%)
- Dewatering (19%)
- Odor Control (5%)
- ADG System (<1%)
- Process Supports (2%)
- Main Sewage Pumping (12%)
- Primary Treatment (5%)
- Secondary Treatment (31%)
- Disenfection (0%)
- Thickening (1%)
- Digestion (28%)
- Dewatering (17%)
- Odor Control (5%)
- ADG System (0%)

Process Supports (1%)

Newtown Creek

- Main Sewage Pumping (14%)
 Primary Treatment (2%)
 Secondary Treatment (25%)
 Disenfection (0%)
- Thickening (1%)
- Digestion (2%)
- Dewatering (0%)
- Odor Control (52%)
- ADG System (2%)
- Process Supports (2%)
- Main Sewage Pumping (8%)
- Primary Treatment (0%)
- Secondary Treatment (34%)
- Disenfection (0%)
- Thickening (25%)
- Digestion (19%)
- Dewatering (3%)
- Odor Control (7%)
- ADG System (0%)

Process Supports (4%)

CIP and Energy

Where does Energy Fit Into CIP

• Revamp existing projects

– Centrifuge with Rotary Drum Thickeners

- Re-evaluate timeline due to energy savings
- Group smaller energy project work with larger projects with in the same process area
- Investigate advanced or emerging technologies

Programmatic and Institutional Controls

In-Plant Programmatic Controls

- Reduce recycle flows (washwater, draining tanks, ducking weirs, etc.)
- Automatic lighting controls
- Automatic heating/cooling levels
- Diffuser cleaning schedule
- Fan filter replacement schedule

Institutional Controls

- Energy usage/purchase reduction goals
- Identifying and Screening Protocols (FOG/food waste program, etc.)
- Energy policies (e.g. LEED)
- SOPs for design specification
- Energy analysis/consideration during design

SOP and Policy Development

Design Consideration: Example

- Design: 200 ft pipe run with 15 ft lift at 400 gpm
- Consideration: 3" vs. 4" pipe same pump

	3″	4"
Pipe Cost	\$16,890	\$18,540
Energy Cost (\$0.11/ kwh)	\$2,813/year	\$2,200/year

Savings: Over \$600/year Simple Pay Back: Under 4 years

- Rehabilitate an old Stormwater Pump Station
- Initial construction in 1950's 9.8 MGD

Work:

- Replace three axial flow pumps with submersible pumps
- Improve lighting (LED)
- Install electrical room
- Improve pump station access

	Future			Current			Change		
	Electric	GHG		Electric	GHG		Electric	GHG	
Storm Return Period	Consumed	Emissions	Cost	Consumed	Emissions	Cost	Consumed	Emissions	Cost
Year	kwh/event	lb CO2e	\$/event	kwh/event	lb CO2e	\$/event	kwh/event	lb CO2e	\$/event
1	43	28	\$ 7.78	29	19	\$ 5.31	14	9	\$ 2.48
2	52	34	\$ 9.34	35	23	\$ 6.37	17	11	\$ 2.97
10	69	46	\$ 12.45	47	31	\$ 8.49	22	14	\$ 3.96
25	86	57	\$ 15.57	59	39	\$ 10.61	28	18	\$ 4.95
50	104	68	\$ 18.68	71	47	\$ 12.74	33	22	\$ 5.95
100	121	80	\$ 21.80	83	54	\$ 14.86	39	25	\$ 6.94

Future - Current (+ is increase/- is decrease)

	Future			Current			Change		
	Power	GHG Emmission	Cost	Power	GHG Emmission	Cost	Power	GHG Emmission	Cost
Asset	kwh/yr	tons CO2e/year	\$/yr	kwh/yr	tons CO2e/year	\$/yr	kwh/yr	tons CO2e/year	\$/yr
Fan	13,065	4	\$2,352	8,165	3	\$1,470	4,899	1.6	\$882
Unit Heaters	86,880	29	\$15,638	76,020	25	\$13,684	10,860	3.6	\$1,955
Total HVAC System	99,945	33	\$17,990	84,185	28	\$15,153	15,759	5.2	\$2,837
Future - Current (+ is increase/- is decrease)									

The design needs in this case justified an increase in energy costs. Due to the need to improve climate conditions particularly for the electrical components: A less efficient submersible pump as opposed to a centrifugal pump was needed to facilitate footprint.

Change from Current Operations to FSD						
Estimated Annual Electrical Consumption	16,035 KWH/year					
Estimated Annual GHG Emissions	5 tons CO2e/year					
Estimated Annual Operating Costs	\$2,886/year					
Future – Current (+ is increase / - is decrease)						

QUESTIONS?

May 11, 2017

THANK YOU

May 11, 2017

