

NJ Water Environment Association

NJWEA John J. Lagrosa 102nd Annual Conference & Exposition

Managing Water and Wastewater Utility Data to Reduce Energy Consumption and Cost

Mohammad Badruzzaman, PhD, PE, BCEE Art Umble, PhD, PE, BCEE Carla Cherchi, PhD Joseph Jacangelo, PhD

Background

- Energy management is a continuous improvement process
- Information on energy use (where, when, how much, and at what tariff) is extremely important for energy management
- Understanding of the factors impacting the performance of water/wastewater utility assets is critical

Data Management is Critical for Energy Optimization

Plants

recycle)

- Utilities possess valuable and useful data, but need assistance on identifying the questions to ask
- Data management helps in operational performance benchmarking and improvement
- Long-term energy management depends on more granular level (process specific, equipment level) data management

Energy Use (GWh/year)

Holistic and Integrated Approach to Data Management

- Identify data sets of value to reduce energy consumption and cost of pumping operations and treatment processes (i.e., what, when, and where to monitor/ collect/analyze)
- Apply data analytics, platforms, and display methods that will support reduction in energy consumption and cost (i.e., actionable, real-time trends and display)

Presentation Objectives

- How to improve energy efficiency and reduce costs using advanced data management and analytics?
- How to use data for energy efficiency performance benchmarking?
- What are the lessons learned/challenges with data management?

Case Studies on Pumping Systems Energy Efficiency

Case Study 1 Pilot-Scale Demonstration of the EWQMS Framework for Energy Management

Energy Optimization Principle

Drivers for the Study

 Does lower energy use operation result in increased operating costs for water utilities?

Pilot Site

Data Collection Framework

Real-Time Operation Results

Optimization Scenarios

Optimization Scenarios

Real-Time Operation Results

Badruzzaman et al. (2015) Optimization of energy and water quality management systems for drinking water utilities, A report published by the Water Research Foundation.

Case Study 2

Pilot-scale Demonstration of Lift Station Optimization for Energy Efficiency

Drivers for Lift Station Optimization

- Operation of Lift Stations with local or basic controls
- Common practice of no hydraulic optimization
- Operation with old instrumentation and SCADA control systems

 Understand how hydraulic model simulation can be integrated with new generation SCADA system

Description of Pilot Site

Optimization Principles

Model Run	Description	Observation
Scenario #1	Run only one lift station at a time with current on/off levels	Resulted in the highest energy consumption due to pumps running on the right side of their curve
Scenario #2	Run all pumps on VFDs	Resulted in the lowest energy consumption, but was the most costly option due to capital investment in VFDs
Scenario #3	Run all pumps near their BEP	Resulted in inability to maintain the BEP only when additional pumps were called to run
Scenario #4	Level out influent flows to the wastewater plant and store wastewater in the collection system.	Resulted in the lowest energy consumption while still being a cost-effective option

Baseline Vs Optimized Operation

• Average energy reduction observed was about 14-17%

Collection System Flow to Treatment Plant

Badruzzaman et al. (2016) Minimizing energy use and GHG emissions of litt stations utilizing realtime pump control strategies, Journal of Water Environment Research.

Case Study 3 Benchmarking of Pump Stations for Energy Efficiency

Drivers for Pump Benchmarking

- Benchmarking information is needed on the performance of a pumping system relative to:
 - o its baseline performance
 - the performance of a peerutility pumping system

 Benchmark pump performance for a wide range of categories (type, age, control, etc.)

A New Way to Measure Pump Station Performance

Two New Metrics for Pump Performance Assessment

 Pump Energy Indicator (PEI) is calculated based on the pressure difference (Total dynamic head, TDH)

 $PEI=kWh/ML*m(\Delta Pressure)$

 Pump Performance Indicator (PPI) is calculated based on the differences in elevation (i.e., just static head) PPI=kWh/ML*m(ΔElevation)

Data Collection Framework

Data Collection and Validation

Total # of Utilities: 15 Total # of Pump Stations: 42 Total # of Pumps: 148

Database Development/Validation

DATA CLEANING

Pump Benchmarking Tool Architecture

Pump Benchmarking Tool

Log. X-axis

Flow vs PEI

Badruzzaman et al. (2017) Performance benchmarking of pumps and pumping systems for drinking water utilities, An ongoing project funded by the Water Research Foundation (WRF 4621).

29

Energy Data Management is a Complex Process

Badruzzaman et al. (2017), Managing water and wastewater utility data to reduce energy consumption and costs, An ongoing project funded by the Water Research Foundation (WRF 4668)

Acknowledgements

Funding Agencies

- Water Research Foundation
- Water Environment & Reuse Foundation
- California Energy Commission

Project Partners

- Linda Reekie, WRF
- Walter L. Graf, Jr, WE&RF
- David Weightman, CEC

Project Partners

- Derceto/SUEZ
- JEA
- Eastern Municipal Water District
- Other water and wastewater utilities

NJ Water Environment Association

NJWEA John J. Lagrosa 102nd Annual Conference & Exposition

Questions

Mohammad Badruzzaman, PhD, PE, BCEE

