Torrefaction, Pyrolysis, and Gasification-Thermal Processes for Resource Recovery and Biosolids Management

Jeanette Brown, PE, BCEE, D.WRE, F.WEF,F.ASCE NJWEA-AAEES Symposium May 8, 2017

Presentation

- Setting the stage
- Thermal Process
 - Description
 - Applications to biosolids resource recovery
- Comparison to Anaerobic Digestion
- Current status

Biomass

- UN defines it as non-fossilized and biodegradable matter derived from plants, animals, and microorganisms
 - Can include gases and liquids recovered from decomposition of nonfossilized and biodegradable organic materials
- IFP Energies Nouvelles
 - About 5% of global biomass available to produce energy
 - About 13.5 billion metric tons (14.9 tons (US)
 - Equivalent to 6 billion metric tons of oil or 45 billion barrels
- Products derived from biomass
 - Liquid fuels- ethanol, methanol, biodiesel, vegetable oil, pyrolysis oil
 - Gaseous fuels-biogas, producer gas
 - Solid fuels-charcoal, biochar coke

Setting the Stage

- New paradigm-Water Resource Recovery Facilities (WRRFs)
- Current biosolids management options
 - Stabilization methods
 - Current popularity of Anaerobic Digestion
- Drivers for alternative technologies
 - Issues with anaerobic Digestion
 - Size
 - Cost
 - Mass of solids for disposal

Anaerobic Digestion

Advantages

- Produces biogas
 - BTU value-600 BTUs/ft³
 - Natural gas 1000
- Reduces pathogens and vector attraction (VS)
 - 38% minimum
- Produces a fertilizer if Class A or B technology used

Disadvantages

- Anaerobic digestion is a biological process
 - Subject to toxic discharges
 - Subject to biological imbalances
- At least 50% if input solids remaining for disposal
- High concentration of ammonia and some phosphorus recycled to treatment plant

Thermal Process

- Oxidative processes
 - Combustion
- Starved or no oxygen processes
 - Torrefaction and carbonization
 - Pyrolysis
 - Gasification
- Can be used to produce liquid, gaseous, and solid fuels from wastewater residuals

Torrefaction

- Thermochemical process
 - Inert or limited oxygen
 - Biomass slowly heated
 - Within specific temperature range
 - For a specified time
- Objective
 - Increase energy density of biomass by increasing carbon content while decreasing hydrogen and oxygen content

Torrefaction

- Typical temperature range-200 to 300° C
- Optimum is oxygen free environment
 - Can tolerate small amounts of O₂
- Similar to carbonization
 - Produces charcoal
 - Drives off most of the volatiles whereas torrefaction retains them
 - Operates at higher temperatures
- Main goal is maximize biochar production
 - Gas production minimized but can be used

Step 1 **Receiving and storage**

Step 2 Drying

Wood chips are collect-The wood chips are ed and stored so they can dried using a closed-loop be used as biomass fuel. belt dryer before undergo-

ing torrefaction.

Step 3

Torrefaction

The wood chips are heated using microwave technology within a rotating drum reactor, creating a charcoal-like substance.

untreated wood.

unprocessed wood chips

dried wood chips

torrefied wood chips

final wood pellets

Step 4

The torrefied wood is ground up and made into pellets that produce up to 10% more energy than

Pyrolysis

- Pyrolysis
 - Total absence of oxygen
 - Useful products
 - Precursor to gasification
- History
 - Used to produce charcoal from wood to extract iron from iron ore in ancient China and India~4000 BCE
 - Mid-1840's pyrolysis process invented to produce kerosene

Pyrolysis

- Process conditions
 - Rapid heating of biomass
 - No oxygen or air
 - Held for a specific period at high temperatures
- Produces
 - non-condensable gases
 - Solid char
 - Liquid products

Pyrolysis Process

Pyrolysis-Operating Conditions

- Temperature-Depends on desired product
 - Maximize char production
 - Slow heating <0.01 to 2.0° C/s
 - Final Temperature $\leq 300 \uparrow o C$
 - Long residence time, 10-60 minutes
 - Maximize liquid products (bio-oil)
 - Rapid heating
 - Peak temperature ~650° C
 - Maximize gas production
 - Rapid heating
 - Temperatures ~1000° C

Gasification

- Gasification is a thermo-chemical reaction with the following distinct stages:
 - Drying
 - Pyrolysis
 - Char combustion

- Performed at sub-stoichiometric oxygen concentrations and pressure (low or high)
 - \bullet Produces CO and $\rm H_2$ with some methane which is a synthetic gas known as Syngas

Gasification

- Pyrolysis process occurs as the carbonaceous particle heats up.
 - Volatiles are released and char is produced
 - Process is dependent on properties of the carbonaceous material which
 - determines the structure and composition of the char
- Combustion
 - occurs as the volatile products and some of the char reacts with oxygen
 - form carbon dioxide and carbon monoxide
 - which provides heat for the subsequent gasification reactions

Gasification

- Gasification
 - occurs as the char reacts with carbon dioxide and steam to produce carbon monoxide and hydrogen $C + H_2O \rightarrow H_2 + CO$
- Finally, reversible gas phase water gas shift reaction reaches equilibrium
 - balancing the concentration of carbon monoxide, steam, carbon dioxide and hydrogen.

$$\mathrm{CO} + \mathrm{H_2O} \leftrightarrow \mathrm{CO_2} + \mathrm{H_2}$$

Comparison of Technologies

- Torrefaction
 - Lower heat
 - Biochar production
 - Limited gas production
 - Low value gas ~100 BTU's/ ft³
- Pyrolysis
 - Bio-oil
 - Biochar
 - Syngas
 - Higher value gas~250 to 500 BTU's/ft³

- Gasification
 - Mostly gas~125 to 300 BTU's/ft³
 - Some Biochar
 - Lowest ash production

Biomass from WW Residuals

- Wastewater residuals

 (sludge, biosolids) are a
 renewable energy source
 with a relatively high
 energy value value.
- Characterization
 - Proximate Analysis
 - Ultimate Analysis
- Undigested primary/WAS
 - ~8500-12,000 BTU's/lb (16 to 22 MJ/kg)

Advantages-Disadvantages of Thermal Processes

Advantages

- Easy to operate
- Very high reduction of mass
- Production of useful products
- Low capital and operating costs

Disadvantages

- Production of tars
 - Insoluble
 - Soluble
- Low energy value gas
 - Depending on process
- Fear of unknown

Product Characteristics and Uses

- Biochar
 - High carbon content
 - High water holding capacity in soil
- Gas
 - Generate electricity
 - Produce liquid fuels and chemicals
 - Methanol
 - Fischer-Tropsch Synthesis
 - Liquid Hydrocarbons

Product Characteristics and Uses

- Bio-oil
 - Renewable fuel
 - Used to fire boilers
 - Bio-diesel
 - Produce most of the same products from bio-oil as petroleum
 - Resins
 - Agro-chemicals
 - Preservatives

Comparison of AD and Thermal Processes

Anaerobic Digestion

- Biogas
 - 600 BTUs/ft³
- Solids
 - About 50% for disposal
 - Can be used beneficially
 - Subject to continuous testing for land application
- Operation
 - High level of process control
- Capital costs
 - high

Thermal Processes

- Synthetic gas
 - Torrefaction
 - Pyrolysis
 - Gasification
- Solids
 - 10% residuals
 - Can be used beneficially
 - Only limited testing required
- Operation
 - Minimal process control
- Capital costs
 - Low

Current Status on WW Biomass

- Torrefaction
 - Currently being used in UK to produce soil conditioner
 - Unaware of any systems in US
- Pyrolysis
 - South Africa
 - UK
 - US
 - BPS (Biowaste Pyrolysis Systems
 - Evaluating demonstration locale in Northeastern US
 - Kore-California
 - Gasification
 - SÜLZLE KOPF-Germany
 - 3 full-scale installations
 - Being evaluated as a technology in two US states and Canada

Conclusions

- Thermal processes can be used effectively to produce energy and useful byproducts
- Need demonstration facilities to inform and educate endusers
 - Better understand operational requirements
 - Tar formation and destruction
 - Gas clean-up needs
- A good alternative to anaerobic digestion
 - Especially if land application is not available or is prohibited

Questions?