Energy Use Optimization and Recovery Strategies to Strive for Energy Neutrality

Jay R. Surti, PE
Engineering Director, Suez

May 8, 2017
NJWEA 102nd Annual Conference
AAEES Workshop
The “N.E.W.” Paradigm

Nutrients
Water
Carbon/Energy

Wastewater Treatment Plants → Water and Resource Recovery Facilities
Energy Management Drivers

• Increase in energy costs
 • Water and wastewater treatment typically accounts for 30 to 60 percent of municipal government energy usage

• Reduce O&M costs and financial burden on end users

• Stricter regulations
 • Nutrient removal
 • Complex and energy intensive treatment processes
 • Biosolids land application challenges

• Climate change adaptation

• Resiliency
Energy Management Focus Areas

Energy Use Baseline
- Energy benchmarking e.g. kWh/MG, kWh/lb BOD treated, kWh/lb N treated.
- Electrical sub-metering
- Utility billing rate structure
- Current and future energy costs

Non-Process Energy Use Optimization and Generation
- Lighting, building and HVAC Improvements
- Renewable energy such as solar, wind and/or hydroelectric

Process Optimization
- Process control optimization and improvements
- Process modifications or upgrades (low metabolic pathway)
- Energy efficient equipment

Process (Calorific) Energy Recovery
- Biochemical processes
- Thermochemical processes
- Treatment of other high energy dense waste materials e.g. FOG
Can WRRF’s be Net Zero Energy?

- Research by David Bagley at U of Toronto (North Toronto TP) in 2001:
 - Electricity consumed: 0.2 kWh/m³
 - Potential Energy of Raw Wastewater: 1.8 kWh/m³
 - WW contains ~10 times the energy needed for conventional treatment
 - In theory we only need to be 10% efficient at converting BOD to electricity
Carbon – A Limited Resource with Competing Demands

- Tradeoffs between achieving low energy and low nutrients
 - Carbon demand to drive biological nutrient removal vs. methane production to generate electricity
- Need for balancing competing aspects of nutrient removal, net energy usage, and high quality effluent water goals
Knowing the Carbon and Energy Flow
CS 1 – Greater New Haven WPCF

• 60 mgd facility
 • Nutrient Removal: 5 mg/L
 TN annual average

Energy audit led to optimization and process control enhancements!
CS 1 - Power Mapping and Energy Model

- Detailed mapping of power systems and MCCs
- Static energy model to account for unit process energy consumption
- Model calibration through online power monitoring of key load centers

OMI Electricity Baseline End Use Budget

East Shore Facility

Month: December

<table>
<thead>
<tr>
<th>Large Motors:</th>
<th>No. of Motors</th>
<th>Operating Motors</th>
<th>Power Factor</th>
<th>HP per Motor</th>
<th>KW per Motor</th>
<th>Run Hours per Day</th>
<th>Billed KW</th>
<th>Monthly KW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influent Pumps</td>
<td>3</td>
<td>3</td>
<td>0.90</td>
<td>250.0</td>
<td>166.6</td>
<td>24.0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Influent Pumps</td>
<td>2</td>
<td>1.8</td>
<td>0.90</td>
<td>125.0</td>
<td>93.3</td>
<td>24.0</td>
<td>151.07</td>
<td>112,392</td>
</tr>
<tr>
<td>Centrifugal Blowers</td>
<td>5</td>
<td>4.8</td>
<td>0.90</td>
<td>700.0</td>
<td>522.2</td>
<td>24.0</td>
<td>704.57</td>
<td>524,496</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>830,950</td>
<td></td>
</tr>
</tbody>
</table>

Small Motors:

Bar Screens	2	4	0.90	2.0	1.5	24.0	1.61	1,199
Primary Clarifiers	3	3	0.90	1.0	0.7	24.0	2.01	1,496
Secondary Clarifiers	8	8	0.90	1.0	0.7	24.0	5.37	3,996
RAS (WRFY) Pumps	8	8	0.90	25.0	18.7	24.0	134.28	99,904
Secondary Scum pumps	4	4	0.90	5.0	3.7	12.0	13.43	4,956
Primary sludge pumps	6	6	0.90	30.0	22.4	12.0	60.43	22,476
Thresl Primary sludge pumps	2	1	0.90	5.0	3.7	12.0	3.36	1,249
Primary sludge thickeners	2	2	0.90	1.0	0.7	24.0	1.34	999
WAS Pumps	10	5	0.90	15.0	11.2	24.0	50.36	37,495
Total								744,071

| RAS Tank | 4 | 4 | 0.90 | 7.5 | 5.6 | 24.0 | 20.14 | 14,388 |
| **Total Motor Loads** | | | | | | | | 1,380,961 |

<table>
<thead>
<tr>
<th>Other Loads:</th>
<th>KW Load</th>
<th>Run Hours per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>207.2</td>
<td>20.0</td>
</tr>
<tr>
<td>Lighting Upgrade</td>
<td>(75.0)</td>
<td>20.0</td>
</tr>
<tr>
<td>Total</td>
<td>282.2</td>
<td>20.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Conditioning</th>
<th># of Units</th>
<th>KW Load</th>
<th>Run Hours per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>78.0</td>
<td></td>
<td>78.00</td>
</tr>
<tr>
<td>Total</td>
<td>32.6</td>
<td></td>
<td>32.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heating</th>
<th>KW Load</th>
<th>Run Hours per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.6</td>
<td></td>
<td>32.60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14,148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Loads</th>
<th># of Work Stations</th>
<th>KW per Work Station</th>
<th>Run Hours per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.5</td>
<td>18.0</td>
<td>14.25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7,952</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous Receptacles</th>
<th>KW per Sq. Ft</th>
<th>Run Hours per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>320,000</td>
<td>46.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>188,276</td>
</tr>
</tbody>
</table>

| Total Baseline Electricity Loads | 1,957,237 |

- Detailed mapping of power systems and MCCs
- Static energy model to account for unit process energy consumption
- Model calibration through online power monitoring of key load centers
CS 1 – Energy Monitoring Dashboard
CS 1 – The Energy Management Improvements

• Mapping, Modeling & Monitoring Outcomes
 • Found 0.6 million kWh/year of power used by 3rd party contractor
 • Identified weaknesses in emergency power supply
 • Found discrepancies between utility bills and on-line metering

• Energy management improvements
 • Aeration: 1 million kWh/yr
 • Lighting: 0.66 million kWh/yr
 • Instituted ISO NE demand response program to generate revenue and reduce power load by 1.7 MW
CS 2 - Green Bay Metropolitan Sewerage District (GBMSD)

• Formed in 1931 owns and operates:
 • GBF, designed to treat 49.2 mgd through secondary treatment
 • DPF, designed to treat 14.2 mgd through secondary treatment

• NEW Water – Water Conservation & Stewardship

*Gain flexibility by tapping energy in wastewater solids!
Energy Summary for 2035 - Annual Average Flows (Revised: October 09 2015)

5.2 Mbtu/hr
3
3.5 Mbtu/hr
3
(5.0 Mbtu/hr)
4
2.7 MW
3
(3.9 MW)
4
9.3 Mbtu/hr
3
(13.3 Mbtu/hr)
4
2.7 Mbtu/hr
3
6.6 Mbtu/hr
3
10.6 Mbtu/hr
3
11.5 Mbtu/hr
3
12 Mbtu/hr
3
15.2 Mbtu/hr
3
2.25 Mbtu/hr
3
494,834 ft³/day
3
873,958 ft³/day
3
113,760 gal/day
3
24/7 Operation
3
24/5 Operation
3
LHV basis
3
Million British Thermal Units per Hour
3
Notes:
1 247 Operation
2 245 Operation
3 LHV basis
4 Full Load Output with 2 Engine Generator units operating

Legend:
APC Air Pollution Control Equipment
LHV Lower Heating Value
Mbtu Million British Thermal Units per Hour
MW Megawatts

Digester Performance with thickened sludge only
Biogas Production 494,834 ft³/day
Biogas Energy 12.4 Mbtu/hr
CS 3 – Douglas L. Smith Middle Basin WWTP

• 14.5 mgd
• Project Components:
 • Anaerobic digestion facilities expansion
 • FOG and HSW receiving facility
 • Two 1060 kW co-generation units
• Results
 • Tipping fee: $300,000/yr
 • Electricity savings :$400,000/year

Increased solids handling capacity while decreasing carbon footprint!
CS 3 - Digester Gas Production Increased with Addition of FOG Waste
CS 4 - VandCenter Syd (VCS)

- 3rd largest water and wastewater company in Denmark. Headquartered in Odense.
- Ejby Mølle WWTP
 - 385,000 PE BNR facility
 - 76 percent self-sufficient in 2011

Achieving Energy Self-Sufficiency in a Nutrient Removal Facility Through Operational Optimization!
CS 4 – Ejby Mølle WWTP Process Flow Diagram

- Headworks
- Primary Clarifiers
- WAS Thickening
- Anaerobic Digestion
- Secondary Treatment
- Trickling Filters
- Filtration
- Dewatering
- Energy Generation
- Sludge to Compost

Legend:
- Wastewater
- Sludge
- Gas, heat and electricity
- Fe: Iron precipitant dosed
- Poly: Polyelectrolyte dosed
Availability of detailed historic energy consumption and generation data was key in the evaluation of optimization opportunities.
• Adopted screening criteria
 • Readily implementable; primarily process modifications
 • Significant impact on energy profile
 • Proven process

• Short Listed EOOs
 • Implement chemical enhanced primary treatment (CEPT)
 • Nitrify centrate in trickling filters (TFs)
 • Decommission TFs and convert TF clarifiers to CEPT for wet weather treatment
 • Shorter BNR system solids retention time (SRT)
 • Reduce effluent filtration operation to 12 hours per day

• Long Term EOOs
 – Implement deammonification for nitrogen removal in recycle returns (sidestreams)
 – Replace oxidation ditch mechanical aerators with fine bubble diffused aeration
CS 4 – Path to Energy Self Sufficiency

Energy Produced 2011
Additional Energy Produced
Additional Energy Saved

- All Operational EOOs + Anammox + Diffusers
- All Operational EOOs
- Chemically Enhanced Primary Treatment
- Partial Effluent Filtration
- Lower Bioreactor Sludge Age
- No Trickling Filters
- Existing Condition (Baseline)

Energy Self-Sufficiency
Conclusions

• Typical municipal wastewater theoretically has more energy in wastewater solids compared to energy required for its treatment
• Energy benchmarking and monitoring is essential to evaluate potential improvement scenarios
• Two pronged holistic approach to energy management and self sufficiency
 • Energy use optimization
 • Energy recovery
• Net energy-positive condition achievable with external carbon (codigestion)
• Balancing nutrient removal, carbon management and water reclamation requirements are key to striving for energy neutrality