

Energy and Power 101 – Basics of conversions and calculations and application to WRRFs

AAEES Energy Management Workshop

NJWEA Annual Conference Atlantic City, NJ

May 8, 2017

David A. Vaccari, Ph.D., P.E., BCEE, F.ASCE dvaccari@stevens.edu

Outline

- Energy and Power Units
- Electrical energy
- Chemical Energy of COD
- Hydraulic energy and pumping
- Aeration energy
- Energy recovery from digester gas
- Social cost of energy (carbon)

Energy Conversion

Work=Force[.]d

Force=mass[.]acceleration

[N m]=Joules [ft lb↓f] [BTU] [kg·m/ sî2]=Newtons

1 BTU = 1054.4 Joules (=~1 kJ) 1 BTU = 778.15 ft-lb_f = 1.355 J 1 kW-hr = 3600 J = 3412 BTU 1 calorie = 4.184 J; 1 Calorie = 1000 calories!

Power Conversion

Power=Energy/time

S.I. Unit: [Joules/second]=[kg· m²/s³]=Watts

1 W =
$$3.414 \text{ BTU/hr}$$

1 hp = 550 ft-lb/s
1 hp = $745.7 \text{ W} (= ~ 0.75 \text{ kW})$
1 hp = 17.9 kWh/day

Electrical Power

Volts = Energy per unit charge = *Joules/Coulomb*

 $(1 \text{ Coulomb} = 6.24*10^{18} \text{ charges})$

Current = Flow of charge per unit time = *Coulomb/second*

Power = Energy per unit time = Joules/second = Watts

Joules/second=Watts=Joules/Coulomb·Coulombs/second

 $P = E \cdot I$

120*V*·20*Amps*=2400 *W*

Bad energy unit #1

What is a kW per hr?

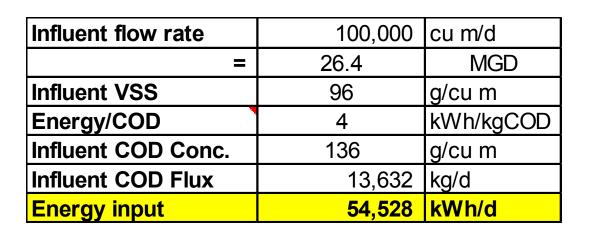
kW=kJ/second

$\frac{kW/hr = kJ/sec/hr = kJ/sec^2}{1/3600}$

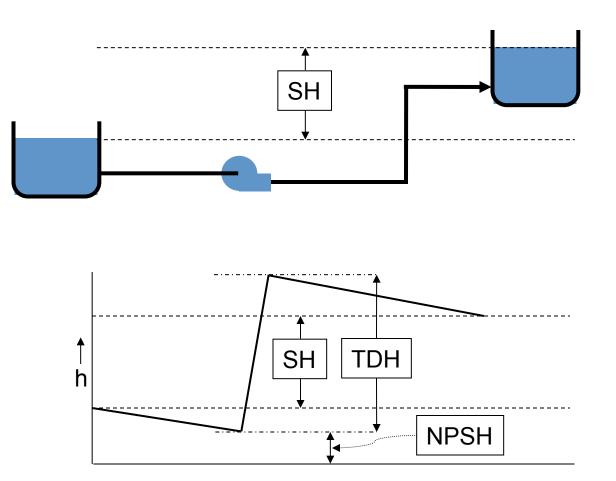
Bad Energy Unit #2:

- Window air conditioner unit rating
- E.g. 12,000 "BTU"
- BTU per What?
- 12,000 BTU/second = 4.2 MegaWatts!
- 12,000 BTU/hour = 3,515 Watts 🗸
- Note: A 12,000 BTU/hr A/C actually uses only about 1,170W
- Electric Power Usage = Cooling power/Coefficient of Performance
- COP is typically about **3**
- EER = (Cooling Power in BTU/hr) / (Electric Power in W)
- In this example, EER = 12,000/1,170 = 10.2

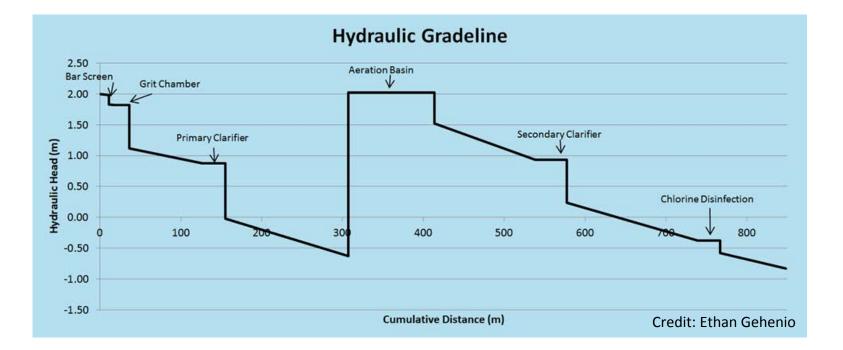
GE 12,000 British Thermal Unit WINDOW AIR CONDITIONER WITH REMOTE


	0	=
=		
		=

Simple WWRF Energy Balance


- Chemical energy input (COD)
- Pumping energy
- Aeration energy
- Energy from digester gas

Energy from Influent COD



Hydraulic Energy Grade Line

Hydraulic Grade Line

Nominal headloss through plant: 5.5 meters (18 feet)

Water Power

Water Power: $P \downarrow W = W \cdot h \downarrow L = Q \cdot \rho \cdot h \downarrow L$

E.g. Pumping 26.4 MGD against a head change of 18 feet:

$$\dot{W} = 26.4 \times 10^{6} \frac{gal}{day} \times 8.34 \frac{lbs}{gal} \times \frac{day}{86,400 \sec} = 2550 \frac{lbs}{s}$$
$$P_{W} = \dot{M} \cdot h_{L} = 2550 \frac{lb}{s} \times 18 \, ft = 46,010 \frac{ft \cdot lb}{s}$$

$$P_W = 46,010 \frac{ft \cdot lb}{s} \times \frac{hp \cdot s}{550 ft \cdot lb} = 83.7 hp$$

Brake horsepower

$$P_B = \frac{P_W}{\varepsilon_P}$$

E.g. If the previous pump were 80% efficient:

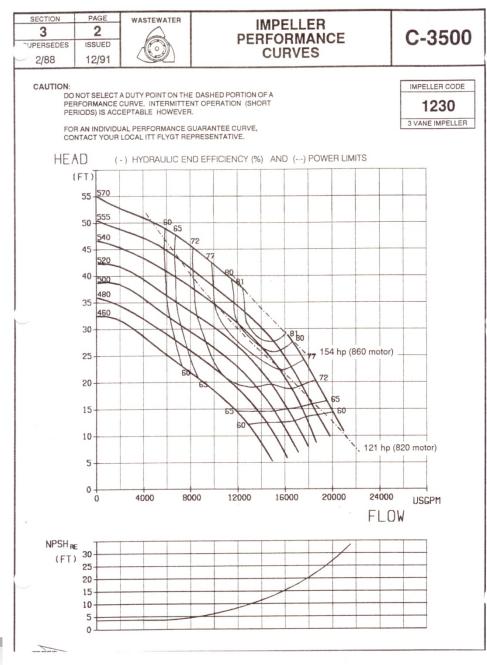
$$P_B = \frac{83.7\,hp}{80\%} = 104.6\,bhp$$

Motor horsepower

$$P_M = \frac{P_B}{\varepsilon_M} = \frac{P_W}{\varepsilon_P \varepsilon_M}$$

E.g. If the motor were 85% efficient:

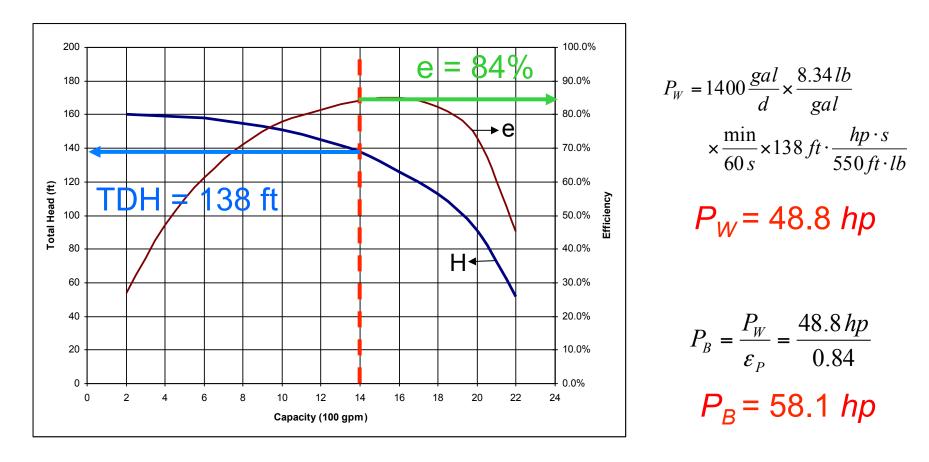
$$P_M = \frac{104.6\,hp}{85\%} = 123\,hp$$


Note: 1 *hp* = 0.746 *kW* = *17.9kWh/d*; so

$$P_{_M} = 123 hp \cdot \frac{0.746 \, kW}{hp} = 91.75 \, kW = 2202 \, kWh \, / \, day$$

2202 *kWh/day* ·\$0.15/*kWh* =\$330 *per day*=\$120,565 per year

Actual Pump Performance


- The Pump Curve

SIEVENS INSTITUTE OF TECHNOLOUT

Simplified Pump Curve

What will be the TDH, efficiency, and power requirement of this pump at 1400 gpm?

S.I. Headloss Calculation

 $P \downarrow W = Q \cdot \rho \cdot h \downarrow L = M \cdot h \downarrow L$

 $h \downarrow L = g \Delta h$

 $P \downarrow W = M g \Delta h$

Influent flow rate	100,000	cu m/d	
=	26.4	MGD	
Mass flow rate	1,157.41	kg/s	
hL	5.5	meters	
g	9.8	m/s/s	
Pw	62,384	kg-m ² /s ³ [W]	
Pw		kWh/day	

Pump efficiency	80%	
Motor efficiency	85%	
Pumping power req'd	2,202	kWh/day

Empirical aeration system design

$$U = \frac{Q \cdot (S_0 - S)}{V \cdot X} = F / M \cdot e \quad \text{[per day]}$$

$$SOUR = U - \frac{1.42}{\theta_c}$$

[per day]

[kg/m³/day]

Fine bubble diffuser:

1.2<*OTE*<2.0 [kgO₂/kW-hr]

OTP=V·OTR/OTE

[kW-hr/day]

100,000	cu m/d	
26.4	MGD	
120	g/cu m	
5.4	g/cu m	
1,110	g/cu m	
25,000	cu m	
0.43	per day	
6.77	days	
95.5%		
0.413	per day	
0.203	per day	
225.5	g/cu m/d	
1600	gO2/kWh	
3,524	kWh/day	
	26.4 120 5.4 1,110 25,000 0.43 6.77 95.5% 0.413 0.203 225.5 1600	

Sludge production mass balance

Primary removal	40%	VSS removal	
Underflow VSS flux	3,840	kg/d	
Act. SI. Waste Flow	871	cu m/d	
Waste VSS Conc.	3,331	g/cu m	
Waste VSS flux	2,901	kg/d	
VSS flux to digester	6,741	kg/d	

Digester HRT	20	d
kd	0.03	per d
Кр	0.625	
VSS flux out of dig.	4,212.91	kg/d
VSS destruction rate	2,528	kg/d

Energy recovery from digester gas

Digester HRT	20	d
kd	0.03	per d
Кр	0.625	
VSS flux out of dig.	4,212.91	kg/d
VSS destruction rate	2,528	kg/d

Qgas	2,528	cu m/d
E dig gas	22,000	J/cu m
Power from gas	55,610,410	J/d
	15,447	Kwh/d
Engine eff	30%	
New Digester Power	4,634	Kwh/d

The Social Cost of Carbon

Social Cost of CO₂, 2015-2050 a (in 2007 dollars per metric ton CO₂)

https://www.epa.gov/climatechange/social-cost-carbon

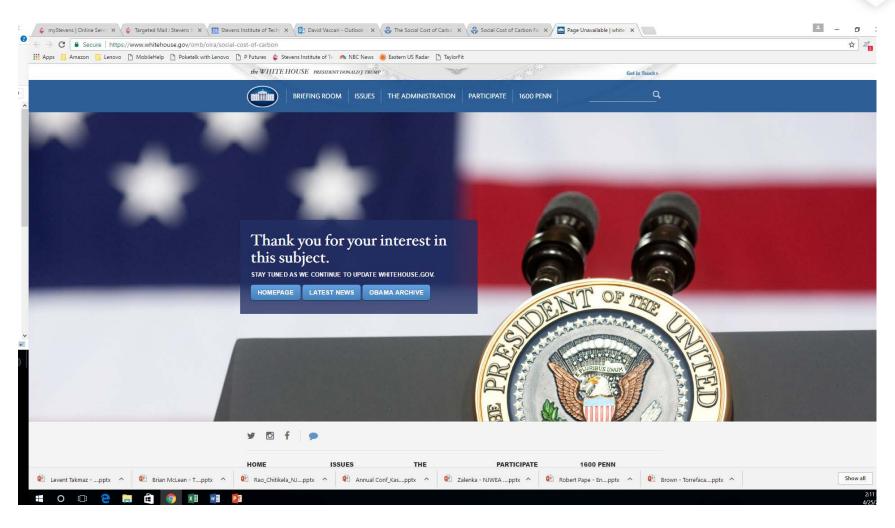
	Emission Factor	
	7.03 × 10 ⁻⁴ metric tons CO_2	/
	kWh	
	(eGRID, U.S. annual non-baseload	-
1	CO ₂ output emission rate, year 2012 d	ata)

= 703 g CO2e/kWh

Using \$42/tonne CO₂e Social cost of electricity = \$0.0295/kWh

At $0.15/kWh \rightarrow 20\%$ of electric cost

Discount Rate and Statistic				
Year	5% Average 3% Average 2.5% Average		High Impact (95th pct at 3%)	
2015	\$11	\$36	\$56	\$105
2020	\$12	\$42	\$62	\$123
2025	\$14	\$46	\$68	\$138
2030	\$16	\$50	\$73	\$152
2035	\$18	\$55	\$78	\$168
2040	\$21	\$21 \$60 \$84		\$183
2045	\$23	\$64	\$89	\$197
2050	\$26	\$69	\$95	\$212


WRRF Net Power

ENERGY BALANCE	kWh/day
COD power	54,528
Hydraulic power	(2,202)
Aeration power	(6,533)
Net digester power	4,634
NET	50,427

ELECTRICITY REQUIREMENT:			
Pumping	2,202		
Aeration	6,533		
Digester gas credit	(4,634)		
TOTAL	4,101		
COST/day (\$.15/kWhr)	\$ 615	\$ 224,526](per year)

SOCIAL COST OF CARBON				
Cost per kWh	\$	0.0295		
TOTAL (per day)	\$	121	\$ 44,157	(per year)

Whitehouse Global Warming Web Site

Thank you

David A. Vaccari <u>dvaccari@stevens.edu</u> Department of Civil, Environmental and Ocean Engineering

