May 7TH, 2018

New Jersey Agricultural Experiment Station

Green Infrastructure Options for Nitrogen Removal in the Barnegat Bay Watershed

Steven E. Yergeau, Ph.D.

Environmental Agent, Ocean & Atlantic Counties

Rutgers Cooperative Extension of Ocean County

Christopher C. Obropta, Ph.D., P.E.

Extension Specialist in Water Resources

Rutgers Cooperative Extension, Water Resources Program

Louise Wootton, Ph.D.

Professor of Biology

Georgian Court University

Introduction

- Barnegat Bay, like many coastal areas in the country, is undergoing water quality problems that affect both its use and ecology.
- The most pressing issue affecting the Bay is overenrichment by nutrients, primarily nitrogen, from surface runoff.
- Approximately half of the nitrogen loads to Barnegat Bay originate from surface runoff.
- Increased nitrogen can lead to a variety of water quality problems: eutrophication and hypoxia (lowered dissolved oxygen), increased harmful algal blooms, loss of submerged aquatic habitat, altered benthic communities, and loss of fisheries.

Green Infrastructure

. . .is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly.

Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and treat runoff as a resource.

Green Infrastructure Effectiveness

Best Management Practice (BMP)	Total Phosphorous Removal Rate (%)	Total Nitrogen Removal Rate (%)	
Bioretention Basin	60	30	
Constructed Stormwater Wetland	50	30	
Extended Detention Basin	20	20	
Infiltration Basin	60	50	
Manufactured Treatment Devices	See N.J.A.C. 7:8-5.7(d)	See N.J.A.C. 7:8-5.7(d)	
Pervious Paving ²	60	50	
Sand Filter	50	35	
Vegetative Filter	30	30	
Wet Pond	50	30	

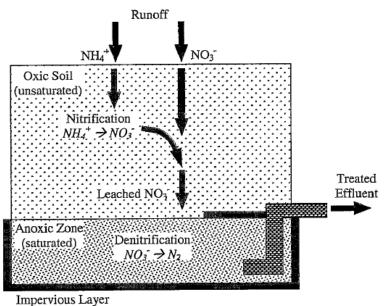
Source: NJ Stormwater BMP Manual (NJDEP, 2004; revised 2017)

Green Infrastructure Options in Barnegat Bay

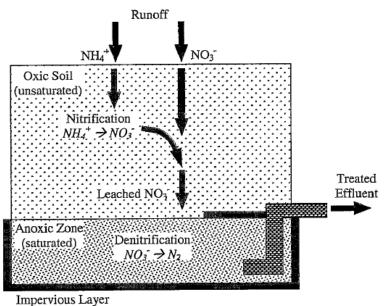
 Modified Rain Garden for Enhanced Nitrogen Removal

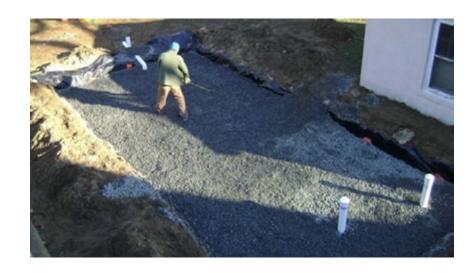
2. Subsurface Gravel
Wetlands Design
Alternative Evaluation

- Installed rain garden next to Georgian Court University dining hall to capture roof runoff in November 2011.
- Began monitoring nutrients (nitrogen and phosphorus) in the inflow and outflow to determine removal rates (project completed in October 2014).



- Project involves
 alteration of the
 'traditional' rain garden
 design in order to
 maximize removal of
 nitrogen from
 stormwater runoff.
 - Maintaining saturated conditions in the rain garden increases nitrogen removal.





Source: Kim et al. 2003

Source: Kim et al. 2003

Methods

Stormwater collected over the course of a storm event at the inlet and outlet of the rain garden.

Samples were analyzed for nutrients (N & P series) and total suspended solids (TSS).

Methods

 Pollutant removal was calculated as percent removal (%R) of the measured target analytes (TA) using the following formula:

$$\%R = \frac{TA_{IN} - TA_{OUT}}{TA_{IN}} X 100$$

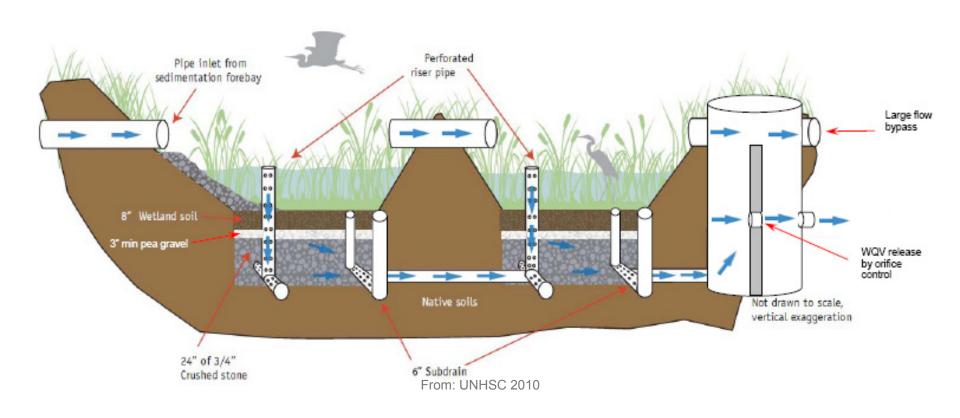
 Data (both sample concentration and %R) were analyzed for significance (p < 0.05) using analysis of variance (ANOVA: single factor).

- 14 storm events samples from September 2012 through October 2014.
- Mean total phosphorus (TP) outlet concentration (0.125 mg/L) was higher than the inlet (0.016 mg/L).
- Mean TP %R efficiency was -686% (export).
- About ½ of the inlet TP samples were below the detection limit; this indicates that the organic planting medium and mulch are leaching phosphorus.

	NH3 (mg/L)	NO2 (mg/L)	NO3 (mg/L)
Inlet (Mean)	0.074	0.013	0.290
Outlet (Mean)	0.037	0.011	0.144
Std Dev – Inlet	0.084	0.004	0.529
Std Dev – Outlet	0.018	0.003	0.249

- Mean NH3 %R efficiency was 50%; NO2 %R was 15.2%; NO3 %R was 50.4%.
- %R for some species of N was higher than the estimated 30% removal for total nitrogen (TN) bioretention basins.

- Many of the inlet samples were found to be below the detection limit for NH3, NO2 and NO3.
- This may indicate that the first flush was missed by the grab samples, or that there was an insufficient load in the source water (i.e., roof runoff).
- More research needed to validate the levels seen and %R calculated.



Subsurface Gravel Wetland

- The University of New Hampshire's Stormwater Center (UNHSC) has established guidelines for the design of subsurface gravel wetlands as a BMP. Results from their work indicate that such gravel wetlands can achieve a median annual removal of at least 95% of NO3, and TP removal was 55%.
- Modified designs are being used in the Barnegat Bay Watershed.

Subsurface Gravel Wetland

Subsurface Gravel Wetland

- Received funding to install a series of four subsurface gravel wetlands with different designs to evaluate design alternatives for Barnegat Bay.
- Finished construction in May 2016 and started monitoring nutrients (N & P series) afterwards.

Four designs being installed and tested on campus of Georgian Court University

3' NJDEP Design: 3' gravel; 3" pea

gravel; 9"

wetland soil

Advanced Bioretention

System: 2' gravel; 2'

bioretention media

UNH Design: 2' gravel; 3" pea

gravel; 9" wetland

soil; 2 cells

2' NJDEP Design:

2' gravel; 3" pea

gravel; 9" wetland

soil

Methods

- Stormwater to collected from 14 storm events at the inlet and outlets of each subsurface gravel wetland design. Autosamplers were used for collection of water samples.
- Samples analyzed for nutrients (N & P series) and TSS.
- Vegetation sampled for growth (density, height, species richness) and underwent tissue analyses for nutrients to determine plant uptake of nitrogen.
- Sampling ran from May 2016 through October 2017.

Results - UNH Design

	NH3 (mg/L)	NO2 (mg/L)	NO3 (mg/L)
Inlet (Mean)	0.28	0.02	0.19
Outlet (Mean)	0.18	0.03	0.43
Std Dev – Inlet	0.12	0.01	0.16
Std Dev – Outlet	0.09	0.03	0.40

- Mean NH3 %R efficiency was 36.0%; NO2 %R was -38.4%;
 NO3 %R was -130.7%.
- %R is estimated at -2.9% for TN for this system.

Results - NJDEP 2' Design

	NH3 (mg/L)	NO2 (mg/L)	NO3 (mg/L)
Inlet (Mean)	0.28	0.02	0.19
Outlet (Mean)	0.21	0.02	0.18
Std Dev – Inlet	0.12	0.01	0.16
Std Dev – Outlet	0.12	0.02	0.13

- Mean NH3 %R efficiency was 26.6%; NO2 %R was -33.4%;
 NO3 %R was 1.8%.
- %R is estimated at -28.0% for TN for this system.

Results - NJDEP 3' Design

	NH3 (mg/L)	NO2 (mg/L)	NO3 (mg/L)
Inlet (Mean)	0.28	0.02	0.19
Outlet (Mean)	0.16	0.02	0.15
Std Dev – Inlet	0.12	0.01	0.16
Std Dev – Outlet	0.07	0.01	0.11

- Mean NH3 %R efficiency was 43.7%; NO2 %R was -4.0%;
 NO3 %R was 18.1%.
- %R is estimated at 24.6% for TN for this system.

Results – ABS Design

	NH3 (mg/L)	NO2 (mg/L)	NO3 (mg/L)
Inlet (Mean)	0.28	0.02	0.19
Outlet (Mean)	0.17	0.01	0.38
Std Dev – Inlet	0.12	0.01	0.16
Std Dev – Outlet	0.12	0.01	0.17

- Mean NH3 %R efficiency was 41.2%; NO2 %R was 16.7%;
 NO3 %R was -104.0%.
- %R is estimated at 24.8% for TN for this system.

- Many of the inlet samples were found to be below the detection limit for NH3, NO2 and NO3.
- Of the four designs tested, the NJDEP 3' and ABS designs were most efficient when using the raw data. More analyses needed to refine and verify these results.
- More research needed to validate the levels seen and %R calculated.

Steven E. Yergeau, Ph.D.
Rutgers Cooperative Extension of Ocean County
1623 Whitesville Road
Toms River, NJ 08755
(732) 505-3671
yergeau@njaes.rutgers.edu

ocean.njaes.rutgers.edu