Analysis of Green Infrastructure Performance Data in the Streets of Philadelphia

103rd Annual Conference and Exposition of the New Jersey Water Environment Association **Dwayne Myers** CDM Smith

Stephen White Philadelphia Water Department

May 7, 2018

Program and Regulatory Background

2009: CSO Long Term Control Plan Update **2011:** Consent Order & Agreement

CSO reduction

Pollutant removal

• Green and traditional infrastructure

 Monitoring and proof of concept program

• Adaptive management

2012: Partnership Agreement and Administrative Order for Compliance on Consent

phillywatersheds.org/ltcpu

Service Area and Collection System Key Performance Objectives

- CSO Volume Reduction: ~8 billion fewer gallons combined sewer overflow per year compared to today
- Pollutant Load Reduction: Capture and treat pollutants from 85% of wet weather flow
- Green Infrastructure: ~9,600 ac-in of storage/stormwater treatment capacity distributed throughout the landscape

The Urban Hydrologic System *without* Green Infrastructure*

The Urban Hydrologic System *with* Green Infrastructure*

Philadelphia Water Department Typical Hydrologic Year for Wet Weather Planning

Green Stormwater Infrastructure Design Criteria

- Water quality volume informed by long-term rainfall patterns (1-2 inches of runoff for most public and private designs)
- Maximize infiltration into underlying soil (unless unstable geotechnical conditions or contamination are present)

- If infiltration is insufficient to manage all runoff, **controlled release** to the combined sewer system at a rate that can be conveyed and treated at a wastewater treatment plant (~0.05 cfs per acre of impervious drainage area)
- Reduce pollutants
- Additional stream channel protection and peak flow requirements in some areas

Constructed GSI Projects

Green Infrastructure Examples

Columbus Square Rain Garden

Columbus Square Planter Trench

Front Street Tree Trench

Green Infrastructure Example – Design and Monitoring Results

Green Infrastructure Example – Design and Monitoring Results

Monitoring Objectives

- Regulatory reporting
- Confirm performance as designed
- Identify field troubleshooting/retrofit needs
- Inform design criteria and regulations
- Inform maintenance and monitoring practices
- Validate computer models
- Inform adaptive management decisions
- Contribute to the state of knowledge

Monitoring Approaches

- Verification that the site was built as designed
- Visual assessment
- Planting media infiltration testing
- Simulated runoff testing
- Rainfall monitoring
- Water level logging
- Inflow and Outflow Measurement Research with academic partners
- Combined Sewer System Flow Monitoring Used in computer model calibration
- Pollutant Concentration Monitoring Research with academic partners

Wet Weather Events in the WQV* Range (February-June 2017)

Event #	Dates	Depth (inches)	Duration (hrs)	Peak Intensity (in/hr)**
6	March 13-14, 2017	1.51	12.25	0.37
9	March 30-31, 2017	1.61	31.25	0.35
11	April 6, 2017	1.46	12.50	1.39
17	May 4-5, 2017	1.33	13.75	0.79
18	May 12-13, 2017	1.85	24.00	0.32
26	June 24, 2017	1.04	3.75	1.92

* Water Quality Volume** 15-minute measurement

Green Infrastructure Performance Analysis: Infiltration (2012-2015)

Observed post-construction infiltration rates are higher on balance than pre-construction infiltration test results would suggest.

Pilot Program Final Report, Philadelphia Water Department, 2016

Green Infrastructure Performance Analysis: Draindown (2012-2015)

System Response at Columbus Square and Front Street to a 1 inch Event on June 27, 2014

Green Infrastructure Performance Analysis: Storage Utilization (2012-2015)

Green Infrastructure Performance Analysis: Storage Utilization (2012-2015)

Conclusions

- Systems generally performing better than predicted under engineering design assumptions
 - Fewer overflows
 - Higher infiltration rates
 - Faster draindown times
 - More excess storage capacity available
- Site-scale design criteria are tied to collection system performance
- Green infrastructure is functioning as an effective combined sewer overflow control
- Results meet regulatory requirements and will inform future monitoring, maintenance, and design practices

Contact us!

Dwayne Myers 215-239-6453 myersrd@cdmsmith.com

cdmsmith.com

www.phillywatersheds.org www.phila.gov/water

