

Field Study on Removal of Dissolved Metals from Parking-lot Runoff by Catch Basin Filters Augmented with Media Containing Water-treatment Residuals

Sunhawach Na Nagara¹
Dibyendu Sarkar¹
Virinder Sidhu¹
Kirk Barrett²

¹Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ

²Civil and Environmental Department, Manhattan College, Bronx, NY

Sources of Metals in Road Runoff

- Cu: pavement wear, brake linings, plumbing, electroplating wastes, and algaecides
- Pb: car batteries and exterior paints
- Zn: car tires, atmospheric fallout, exterior paint, and building sidings

Metals in Road Runoff

Contaminated Surface water

Harmful Characteristics of Metals

- Accumulation in the environment
- Non-biodegradability
- Biomagnification
- Toxicity

Adverse impacts

- Affecting reproduction rates and life spans of aquatic species
- Disrupting food chains in aquatic systems
- Affecting water supplies

To develop green catch basin filter to remove heavy metals from road runoff

Catch Basin Inserts

- Stormwater drain retrofit
- Easy installation and maintenance
 - Low cost

Objective

To develop green catch basin filter to remove heavy metals from road runoff

Aluminum-based water treatment residuals (Al-WTR)

- A byproduct of drinking water treatment process
- Available at no cost
- Primary components: Al-hydroxides
- Very high specific surface; highly effective in metal adsorption
- Everyday 2 mega tons generated in the US
- Non-hazardous waste material

Toxicity Characteristic Leaching Procedure (TCLP)

TCLP values (mg/L) of RCRA 8 metals			
Analyte (mg L ⁻¹)	USEPA Limit (mg L ⁻¹)	Al-WTR	
Arsenic	5	1.93	
Barium	100	1.44	
Cadmium	1	0.028	
Chromium	5	0.023	
Lead	5	0.239	
Mercury	0.2	< MDL**	
Selenium	1	< MDL	
Silver	5	0.001	
Copper	10	0.05	
Zinc	NR	0.244	
Aluminum	NR	228.9	
Iron	NR	2.308	

Synthetic Precipitation Leaching Procedure (SPLP)

SPLP values (mg/L) of RCRA 8 metals			
Analyte (mg L ⁻¹)	USEPA Limit (mg L ⁻¹)	Al-WTR	
Arsenic	5	0.002	
Barium	100	0.049	
Cadmium	1	0	
Chromium	5	0.001	
Lead	5	0	
Mercury	0.2	0.004	
Selenium	1	0.001	
Silver	5	< MDL**	
Copper	10	0.003	
Zinc	NR	0.003	
Aluminum	NR	10.23	
Iron	NR	3.285	

Development Timeline

Lab study: Hydraulic Performance Column Study

Carbon Material (CM)

Mono-layer media

Dual-layer media

Sand + Al-WTR

Blended Sand:CM 1:1 + Al-WTR

CM + Al-WTR

2.5 cm of Al-WTR-amended sand over a 7.5 cm layer of CM

5 cm of Al-WTR-amended sand over a 5 cm layer of CM

Al-WTR

Sand

4 different mixing ratios Al-WTR: Base media (w/w): 1:20, 1:10, 1:5 and 0:1

Lab study: Hydraulic Performance Column Study

Mass ratios of Al-WTR: Base media

Lab study: Metal Removal Performance

Synthetic stormwater

- Cu 6.36 mg/L (Source: Nitrate salt)
- Pb 8.16 mg/L (Source: Nitrate salt)
- Zn 11.70 mg/L (Source: Nitrate salt)

Parameter	Value
Bed Height (cm)	10
Bed Volume (mL)	50.7
Flow Rate (mL/min)	8
Sample Collection	Every 5 minutes for the first 20 minutes, followed by geometric progression

Lab study: Metal Removal Performance

1:5

Al-WTR: sand 0:1 1:20 1:10 (only

sand)

Mono-layer: sand-based media

Dual-layer:
2.5 cm of sand-based
media over
7.5 cm of CM

Lab study: Copper Removal Performance

Mono-layer: sand-based media

Dual-layer:
2.5 cm of sand-based media over
7.5 cm of CM

Mono-layer: sand-based media

Dual-layer:
2.5 cm of sand-based media over
7.5 cm of CM

Lab study: Zinc Removal Performance

Mono-layer: sand-based media

Dual-layer:
2.5 cm of sand-based media over
7.5 cm of CM

Lab study

Metal Removal Performance

Field study

Field study: Study area

Township of Brick Municipal Building

Field testing setup had to be able to:

- Retain and withstand the weight of the filter media
- Direct water to pass through the filter media
- Allow us to sample water before and after passing through the filter media
- Prevent flooding in the case of big storm events through overflow window
- Fit catch basins at the site

Some commercial setups cost more than \$1800

Some than \$1800

Field testing setup had to be able to:

- Retain and withstand the weight of the filter media
- Direct water to pass through the filter media
- Allow us to sample water before and after passing through the filter media
- Prevent flooding in the case of big storm events through overflow window
- Fit catch basins at the site

Cost: less than \$300

- ✓ Retain and withstand the weight of the filter media
- Direct water to pass through the filter media
- Allow us to sample water before and after passing through the filter media
- Prevent flooding in the case of big storm events through overflow window
- Fit catch basins at the site

- Retain and withstand the weight of the filter media
- ✓ Direct water to pass through the filter media
- Allow us to sample water before and after passing through the filter media
- Prevent flooding in the case of big storm events through overflow window
- Fit catch basins at the site

- ✓ Retain and withstand the weight of the filter media
- ✓ Direct water to pass through the filter media
- Allow us to sample water before and after passing through the filter media
- Prevent flooding in the case of big storm events through overflow window
- Fit catch basins at the site

- Retain and withstand the weight of the filter media
- ✓ Direct water to pass through the filter media
- ✓ Allow us to sample water before and after passing through the filter media
- ✓ Prevent flooding in the case of big storm events through overflow window
- Fit catch basins at the site

- ✓ Retain and withstand the weight of the filter media
- ✓ Direct water to pass through the filter media
- ✓ Allow us to sample water before and after passing through the filter media
- ✓ Prevent flooding in the case of big storm events through overflow window
- ✓ Fit catch basins at the site

Field study: Storm drains location

Study Period: 4 months (August – November)

Measured Parameters: Dissolved Cu, Dissolved Pb, Dissolved Zn, Turbidity, pH

Field study: Dissolved lead

Field study: Turbidity

Field study: pH

Conclusion

- The green filter media reduced dissolved Cu, Pb, and Zn in stormwater runoff.
- The catch basin insert material captured suspended particulate matter and thereby reduced turbidity in stormwater runoff.
- The green filter media slightly increased the pH of stormwater runoff.

Society

Environment

Improving water quality

Reducing demand of landfill

Lessening chance of human exposure to heavy metals

Reducing cost of mitigation

Economy

Acknowledgements

- New Jersey Sea Grant Consortium with funds from the National Oceanic and Atmospheric Administration (NOAA) Office of Sea Grant, U.S. Department of Commerce under NOAA grant #NA14OAR4170085.
- Brick Township, for providing the field site for catch basin insert study.
- Stevens Institute of Technology, Hoboken, NJ for lab analysis.
- Mr. Jason Park, Mr. Sameer Neve

