

Analysis of the Implementation of City-Wide Green Infrastructure Solutions to Address CSOs

Case Studies: New York City, Philadelphia, Cleveland

NJEWA Annual Conference Atlantic City, NJ May 7, 2018

Presentation Outline

- Background on Regulations
- Overview of GI Programs and Long Term Control Plans (LTCPs)
 - New York City
 - Philadelphia
 - Cleveland (NEORSD)
- Examples of Common GI Technologies
- Status Updates on LTCPs
- Lessons Learned
- Questions

Regulations

Background on city regulations

Consent Decree Requirements by City

Regulations by City

City		Time Frame	Goal	Methods Utilized
New York City	New York	20 Years	Reduce CSO discharge through green and grey infrastructure	Green and grey infrastructure
Philadelphia	Pennsylvania	25 Years	Reduce stormwater pollution entering the waterways by 85%	Mostly green infrastructure
Northeast Ohio Regional Sewer District	Ohio	25 Years	Limit overflows from 80 per year to 4 per year resulting in 98% capture	Mostly grey infrastructure

GI Programs and Long Term Control Plans

New York City, Philadelphia and Cleveland

New York City

Regulated Agency: NYC

Department of

Environmental Protection

Population: > 8 million

citizens

Infrastructure: 14

wastewater treatment plants

Collection System: 60% Combined, 40% Separated

GI Program and LTCPs: City-wide GI Program and 11 LTCPs utilizing green and grey infrastructure

NYC Green Infrastructure Program

2010

NYC Green Infrastructure Plan was published. Consent Order began in 2012 and extends through 2030

\$410

Total investment of GI between 2010 and March 2017

1.67 BG/yr

Target CSO volume reduction per based on Performance Metric Report

78,749 Acres

Total Impervious Area Citywide \$1 Billion

Budgeted between 2017-2027

4,000 Constructed

Total number of assets that have ben constructed since the start of the program

NYC's Long Term Control Plans – Grey Infrastructure Improvements

1

Bronx River

\$185M grey – sewer modifications

Hydraulic Relief

2

Hutchinson River

\$167M grey – disinfection, floatables and outfall

Disinfection

3 Alley Creek

\$12M grey - disinfection

4

Flushing Creek

\$18M grey – disinfection

Tunnels

5

Flushing Bay

\$1,616M 25 MG CSO storage tunnel

6

Newtown Creek

\$1,422M 39 MG CSO storage tunnel and PS expansion 9 Westchester Creek

\$124M already implemented in grey infrastructure

7

Gowanus Canal

\$932M 2 CSO storage tanks

Tanks

10

Jamaica Bay

LTCP not yet approved

8

Coney

\$197M already implemented in grey infrastructure

<u>11</u>

East River/ Open Waters

LTCP not yet approved

Philadelphia

Regulated Agency: Philadelphia Water Department

Population: > 1.5 million citizens

Infrastructure: 3 wastewater

treatment plants

Collection System: 60% Combined , 40% Separated

Long Term Control Plan:

- Green stormwater infrastructure
- Stream corridor restoration and preservation
- Wet weather treatment plant upgrades

PHILADELPHIA, PENNSYLVANIA

GREEN INFRASTRUCTURE PLAN

2011

"eliminate the pollutants that otherwise would be removed by the capture of 85% by volume of the combined sewage collected in the Combined Sewer System during precipitation events"

10

5/7/2018 Mott MacDonald | NJWEA Conference

Philadelphia Green City Clean Waters Program

25 Year plan

85% Of CSS

Eliminate the pollutants that otherwise would be removed by the capture of 85% by volume of the combined sewage collected in the Combined Sewer System during precipitation events

\$2.4
Billion

Total investment after 25-year period

\$1.67
Billion

Dedicated to Green Stormwater Infrastructure \$345
Million

Wet weather treatment plant upgrades

\$420 Million

Adaptive management which can be directed towards either green or gray infrastructure

Stream Corridor Restoration and Preservation

Restoring Living Resources and...

Tookany/Tacony-
Frankford
Watershed

\$3.12M Commitment
Public Education and
Volunteer Programs
Municipal Measures

Sewer Evaluation, cleaning, relining and rehab

Monitor and Reporting

Cobbs Creek Watershed

\$2.92M Commitment
Public Education and
Volunteer Programs
Municipal Measures
Sewer Evaluation,
cleaning, relining and
rehab
Monitor and Reporting

Delaware Direct Watershed

\$33.65M Commitment
Public Education and
Volunteer Programs
Municipal Measures
Sewer Evaluation,
cleaning, relining and
rehab
Monitor and Reporting

Tidal Schuylkill

\$33.65M Commitment
Public Education and
Volunteer Programs
Municipal Measures
Sewer Evaluation,
cleaning, relining and

Monitor and Reporting

rehab

Wet Weather Upgrades to WWTPs

Northeast, Southeast and Southwest WWPTs

Northeast

- Vortex Swirl Concentrator
- Conventional Clarifiers
- Chemically Enhanced Primary Treatment with Conventional Clarifiers
- Ballasted Flocculation

Southeast

- Vortex Swirl Concentrator
- Conventional Clarifiers
- Chemically Enhanced Primary Treatment with Conventional Clarifiers
- CEPT with Plate Settlers
- Ballasted Flocculation

Southwest

- Vortex Swirl Concentrator
- Conventional Clarifiers
- Chemically Enhanced Primary Treatment with Conventional Clarifiers
- Ballasted Flocculation

Cleveland

Regulated Agency: Northeast Ohio Regional

Sewer District

Population: > 1.4 million citizens in Cleveland and 61 suburban communities

Infrastructure: 3

wastewater treatment plants

Collection System: 23% Combined, 77% Separated

Long Term Control Plan: Grey infrastructure utilized

and only minimum required green infrastructure implemented

NEORSD - Project Clean Lake

25 Year plan

Reduce total volume of raw sewage discharges from 4.5 billion gallons to 494 million gallons annually

98% Capture of CSO

Wet weather flows will be captured and treated

3 WWTPs

Increasing capacity at all three wastewater treatment plants

7 Storage Tunnels

Construction of 7 tunnels ranging from 2-5 miles in length up to 300 feet underground \$42
Million

Six program areas to implement green infrastructure technologies

\$3 Billion

Total 25-year investment for green and gray improvements

Cleveland Consent Decree: \$3B

CSO – 25 Year Capital Improvement Plan

Green Infrastructure Programs

GI Technologies Used

Common Types

GI Technologies Philadelphia

STORMWATER WETLAND

19

GREEN ROOFS

5/7/2018 Mott MacDonald | NJWEA Conference

Common Types

GI Technologies Philadelphia/NYC

RIGHT-OF-WAY BIOSWALES / RAIN GARDENS

POROUS / **PERMEABLE PAVEMENT**

RAIN BARRELS / CISTERNS (Philadelphia Only)

Mott MacDonald | NJWEA Conference 20 5/7/2018

Common Types

GI Technologies Cleveland

PERMEABLE PAVERS

INFILTRATION BASINS

5/7/2018 Mott MacDonald | NJWEA Conference 21

Status Update

NEW YORK CITY

Status Update

- 3,841 GI systems constructed or in construction between 2010 and 2016, thousands more in planning and design
- Based on 1.5% GI implementation rate, 507 MG/ yr of CSO volume reduction
- Planned \$1 billion investment over the next 10 years

Philadelphia, Pennsylvania

Status Update 2016

- Installed 837.7 "greened acres"
- Reduction of over 1.5 billion gallons of CSOs
- 441 green infrastructure sites

Lessons Learned

Lessons Learned

1

There is a need for BOTH green and grey technologies

2

Some cities find green infrastructure to be more cost effective while others find grey to be more cost effective

3

Grey infrastructure allows for the management more stormwater during **larger** wetweather events; green infrastructure good for **small** and **long duration** storms

4

Green infrastructure allows for increased public awareness between agencies and rate payers and other environmental benefits

Green Infrastructure is trending

Chicago

St. Louis

Seattle

Atlanta

Milwaukee

Los Angeles

New York City

28

Philadelphia

Green Infrastructure Lessons Learned

- Use of vegetation & natural features to assure water supplies and manage stormwater
- 85% of storms <1-inch in rainfall volume
- 80% of pollutant mass is transported in the first quarter inch of runoff
- GI is less effective during flash flood events compared to long duration storms
- Dispersed management approach
- Most effective higher in watershed
- Community benefits & visibility
- Long term maintenance plan required
- Public Relations

Success: Combination of Green and gray

- GI technologies are good for smaller rain events
 1 inch in depth
- GI technologies will have minimal effects on large scale flood events
- Gray infrastructure will be more cost effective in storing large volumes of stormwater

Thank you!

Kathryn DePippo, PE, ENV SP

Project Engineer

E Kathryn.depippo@mottmac.com

T 212.532.3078

31