

Rooftop Runoff Mitigation Technologies: Bioretention Planters and Green Roofs

Yang Cheng (Ph.D. Student)
Samantha Conte (Undergraduate Researcher)
Dr. Elizabeth Fassman-Beck (Advisor)

Department of Civil, Environmental & Ocean Engineering

2018/05/07

Welcome to Stevens Living Laboratory

1870

Green Roof Water Quality Monitoring Objectives

Quantify annual and event-based rainfall retention for different

engineered media

- replicated experimental systems
- natural rainfall
- Characterize discharge quality
 - not well understood in literature
 - nitrogen and phosphorus
 - conventional roof runoff vs green roof
 - supplemental treatment?
- "Best" performance for stormwater retention and nutrient leachate?

Experimental Scale: Green Roof Water Quality

- 26 experimental systems currently in operation
- 9 replicated media & supplemental treatment ("PRB") configurations
- 2 "ungreened" controls (conventional roofs)

Green Roof Water Quality: Experimental Design

Irrigation

Media: 4" depth 9.8 ft 12

Downstream "permeable reactive barrier" 0.96 ft 12

Sample collection & runoff volume measurement

Established July 2017

Media Configurations

Data Collection and Sampling

- Water volume collected in buckets = stormwater retention
- Water quality sampling:
 - 9 configurations across 26 trays, including replication
 - Nitrogen Species: Total Nitrogen; TKN, NO₃; Total Inorganic Nitrogen
 - Phosphorus Species: Total Phosphorus, Orthophosphate

Storm Water Retention

Total Nitrogen

Box with stripes indicates PRB

10

0

Total Inorganic Nitrogen

Box with stripes indicates PRB

EMC of Total Inorganic Nitrogen (mg/L)

Orthophosphate

Average Mass Loads

Box with stripes indicates PRB

Perspective

- Collect more data
 - Highly variable storm size
 - New/establishing plants
- Aging and seasonal variations?
- Quantify the effects of PRB in hydrologic behavior and nutrient reduction

Explore more PRB materials such as biochar

The Living Laboratory Bioretention Planters

In collaboration with Michael Borst US EPA Office of Research and Development, Edison, NJ

- 4 planters replicated field experiments
- 2 different engineered media recipes
- Inflow from
 ~ 4800 ft² roof
 through gutters.
- Measure detention (flow) mitigation

1870

Objectives and Applications of Bioretention Planters

- Similar layers to a rain garden, but much smaller system.
- Runoff detention for low volume, frequent storms.
- CSO mitigation opportunity?
- Low footprint, inconspicuous devices → easy retrofit?

Monitoring Stations

- Inflow
- Internal filling & draining
- Outflow
- Soil moisture

9 sensors per planter

STEVENS INSTITUTE of TECHNOLOGY

Representative small storm performance

1870

Representative performance

What happens next?

Future of the Living Laboratory Planters

- Continue monitoring
 - Quantify performance for varied storm conditions
 - How much and how long can water be detained in the system?
 - Is retention (volume reduction) significant?
 - Effect of media recipe?
- Map how water flows through the system → modeling

1870

The project would have been impossible without Birgitte Gisvold Johannessen, Samantha Conte, Sarah Chan, Dylan Wash and Daniel Rosenberger who built this experimental set up, Professor Fassman-Beck, Stevens Facilities Management, Stevens Pinnacle Scholars, Stevens Innovation & Entrepreneurship Scholar.

Special thanks to Michael Borst, US EPA Office of Research & Development, Edison, NJ.

With thanks to these folks for materials' support...

Thank you!

Questions?

stevens.edu

Yang Cheng (green roofs)
Samantha Conte (planters)
Elizabeth Fassman-Beck, Ph.D.

ycheng21@stevens.edu sconte@stevens.edu efassman@stevens.edu