

Pharmaceutical Actives and PFOS/PFOA -What Treatment Technologies are Working

Geosyntec^D consultants

Joseph G. Cleary, P.E., BCEE AAEES Workshop at NJWEA Annual Meeting | May 6,2019

Presentation Outline

Introduction

Ι.

- II. Active Pharmaceutical Ingredients (APIs)
- III. API Treatment Technologies and Case Studies
- IV. PFOS/PFOAs
- V. Technologies and Case Studies
- VI. Summary

What is an API?

- Active pharmaceutical Ingredients (API) are the bioactive chemical agents in our medicines
 - Drug products include pills, tablets, capsules, gels, ointments, oral suspensions & injectable solutions
- Anti-infectives and hormones are the most consequential for the environment
- Modern medicines are built on high potency API
 - Increasingly are high MW biological products
 - Used to be primarily "small molecules" from multi-step chemical synthesis

APIs in the Environment

- APIs can be classified into three potentially harmful categories:
 - Toxic Compounds
 - Endocrine Disrupting
 Compounds (EDCs)
 - Anti-Infectives: Antibiotic & Antimicrobial Agents

Environmental Endocrine Disruptors

The first clue that your new chemical might be an endocrine disruptor.

- Feminization of male fish (e.g. testis-ova induction)
- Modulation of endogenous hormones, receptors, and proteins
- Potential impacts on both human and environmental health

Geosyntec[>]

Antimicrobial resistance (AMR)

- AMR is the resistance of a microorganism to an AI which was originally effective for treatment
- 3 major causes:

Penicillin

1910

- Over-prescription in humans, inappropriate use (e.g. non-bacterial infections), & failure to complete treatment courses
- Routine, non-therapeutic use in livestock Ο
- Releases of Al into wastewater from Ο human/animal metabolism, pharma production discharges, improper disposal

Carbapenem

Over the last 30 years, no major new types of antibiotics have been developed

Cephalosporin

United States population 300m

Geosyntec^D

consultants

>23,000 deaths

>2.0m illnesses

Overall societal costs Up to \$20 billion direct Up to \$35 billion indirect

Fluoroguinolones

Importance of Physicochemical Properties

- WWTPs designed to reduce loads of C, N, and P in the influent at concentrations of mg/L
 - $\circ~$ API typically are present at concentrations in the ng/L to $\mu g/L$
 - $\circ~$ Dilution is a factor in influencing degree of treatment
- Some API can be degraded >90% by activated sludge but many are only partially treated
- Physicochemical properties strongly influence both environmental fate and treatment technology selection
 - Polar groups (e.g. –OH, –COOH, NH₂ etc.) enhance solubility, lessen sorption potential, impart reactivity (acid-base)
 - Degree of saturation of carbon framework
 - Presence of zwitterionic (both "+" and "-") groups

Doxycycline

 $C_{22}H_{24}N_2O_8$

- Aq. Sol. = 630 mg/L @ T=25°C
- Log K_{ow} = -0.16 @ pH 5 to -1.65 @ pH 9
- K_{oc} soil = 42,246-237,225

- Significant solubility in water
- Progressively more hydrophilicity as pH increases
- No significant acid-base behavior
- Moderate sorption potential
- C:H ratio suggests a highly unsaturated C framework, multiple aromatic and olefinic C=C bonds
- Reasonably well biodegraded by AS
- Frequently found in WWTP effluent and in sludges (~1,000 μg/kg)
- Amine functions, multiple C=C bonds make ozone an excellent treatment option

Fluconazole

$C_{13}H_{12}F_2N_6O$

- Aq. Sol. = 4,363 mg/L @ T=25°C
- Log K_{ow} = 0.25-0.40

- Substantial aqueous solubility
- Relatively low sorption potential
- C:H ratio suggests a relatively saturated C framework, 1 aromatic ring & 2 azole groups
- A Chinese study of azole antifungals indicated pass through at the WWTP with little biodegradation or sorption to sludge
- Aromatic ring and fluorines will promote sorption & deactivate reactivity of ring
- Aromatic C=C bonds and amino functionality of azoles are good targets for ozone

Known/Unknown Losses to Water Vary

Processes

- 1. API* Organic Synthesis
- 2. API Fermentation
- 3. DP** Oral Solid Dosage
- 4. DP Liquid Formulation
- 5. Type of Equipment Cleaning

Clean in Place (CIP) System

 * API synthesis – 50 to 100%
 ** Drug Product (DP) – 10-50% for solids, dry wiping/vacuum cleaning closer to 100% for liquids, liquid cleaning

Collect Wastewater and Treat/Dispose

Collect Wastewater at Point of Generation (POG)

- Collect 1st & 2nd equipment cleaning rinses before CIP
- Treatment (e.g., alkaline treatment, advanced oxidation)
- Zero liquid discharge Evaporation Technology
- Off-site disposal (e.g., incineration)

Emphasize Dry Cleaning Practices

- Minimize the use of liquid equipment cleaning
- Maximize the use of dry cleaning/vacuuming

API and excipient powder everywhere!

Removing residual API from filling reservoir of tablet press

Geosyntec[>]

Activated Sludge

Membrane Bioreactor Process

Geosyntec[▷]

Case Study: Biological Treatment Mass Balance

	Plant 1	Plant 2
Influent API (ug/I)	32.6	13
Effluent API (ug/I)	11	0.1
Sludge API (ug/l)	2	0.8
% Effluent	34	< 1
% Adsorbed to Sludge	< 1	< 1
% Volatilized (assumption)	0	0
% Biodegraded	66	99
Sludge Age (days)	15	29
Aeration Basin Temperature (°C)	26	30

Ozone Treatment

Run Number	Treatment Process	Compound Reduction	Toxicity Reduction
1	UV, hydrogen peroxide	99.5%	58%
2	Catalyzed UV, hydrogen peroxide	99.8%	88.2%
3	UV, ozone	99.4%	99.1%
4	UV, ozone, hydrogen peroxide	99.5%	95%

- Hormone Replacement Therapy (HRT):
 - Medroxy Progesterone Acetate (MPA), Trimegestone, 17-αestradiol, 17-β-estradiol, 17-α-dihydroequilin and Estrone
- Oral Contraceptives (OC):
 - 17-α-ethinyl estradiol, Norgestrel, Gestodene, Estriol, Medrogestone and Estradiol Valerate
- <u>Tranquilizers</u>:
 - Oxazepam, Lorazepam and Lormatazepam

Case Study: Process Flow Diagram

Bioreactor and Membrane Tanks

2 GE/Zenon Z-500 C cassettes (0.04/0.1 micron pore size) with filtration area of 2,241 m² per cassette and header for 1 additional cassette per tank. There are 88 modules per cassette. RAS is 6Q.

Case Study: Yeast Estrogen Screen (YES) Results

Geosyntec[>]

Electrochemical AOP

- Core technology is based on electrochemical process
- Electricity is applied to advanced catalysts
- Catalysts generate oxidants to breakdown organics
- Organics oxidized to gases e.g. N₂, H₂, O₂, CO₂
- No other waste or byproducts are generated
- Technology protected by an extensive patent portfolio

Introduction to the Nyex[™] System

Geosyntec[▷]

Case Study: Antibiotic Removal

Name	Removal (%)	Structure
Clarithromycin	96.3	H_{0} H_{0} H_{0} H_{3} H_{3
Sulfamethoxazole	99.0	H ₂ N N-O H ₂ N H
Lincomycin	Below limit of detec=on	N HO H OH N H OH SCH ₃
Ciprofloxacin	78.0	F HN HN

At Source Treatment Screening Table

Table 6-1 Comparison of Non-Cost Criteria – At Source Treatment								
Proven Screening Criteria Ability to Achieve Limits Low Effluent Limits Safety Safety				Comments				
		Proven Technology	Ability to Achieve Low Effluent Limits	Safety	East of operation	Total	Alternatives Selected or Rejected (preliminary)	
Alternative 1	Alkaline Chlorination	3	2	3	2	10	Retain	Most proven and has been used by Pfizer on anti- fungals in Europe
Alternative 2	Ozone	3	3	2	2	10	Retain	Proven in Puerto Rico and China and is another very good option. One chemical versus two for alkaline chlorination
Alternative 3	Carbon	1	1	3	3	8	Retain	Effective for some APIs, but transfers to carbon.
Alternative 4	Biological	1	1	3	3	8	Reject	Not used at all for at source only for total wastewater
Alternative 5	Physical Chemical	1	1	2	2	6	Reject	It not a destructive technology, transfers APIs to sludge
Alternative 6	Fenton's Chemistry	2	1	2	2	7	Retain	Proven chemical oxidation technology that can be used to create hydroxyl radicals that destroy APIs
Alternative 7	UV Peroxide	2	2	2	2	8	Reject	Has been used instead of ozone but is not as commonly selected. Requires cleaning and maintenance of UV lamps
Alternative 8	UV Ozone	3	3	2	2	10	Reject	More complicated than ozone by itself
Alternative 9	Electrochemical AOP	1	1	1	1	4	Reject	No testing done on pharmaceutical wastewater

Geosyntec[⊳]

Types of PFAS: Where do PFOA & PFOS fit?

Carboxylic Acids

Sulfonic Acids

And many more

Geosyntec[>]

Treatment Challenges

- PFAS have unique properties
 - Hydrophobic and oleophobic
 - Persistent, bioaccumulative and toxic
 - Moderate solubility can be transported long distances
- Chemically and biologically stable
 - Resistant to typical environmental degradation processes
 - C-F bond is shortest and strongest in nature
- Treatment approaches challenging and costly

PFAS Removal Solutions

Granular Activated Carbon

- Named Best Available Technology by EPA for organic contaminant removal
- Removes other organic contaminants
- Reactivation removes liability
- Minimal maintenance

Effective Products: AquaCarb® CX Carbon UltraCarb® 1240AW Carbon UltraCarb® 1240LD Carbon

Single Pass Ion Exchange

- Lower EBCT / Higher flowrate
- Small footprint
- No chemicals or liquid waste
- Spent resin can be incinerated, destroying the contaminants (PFAS)
- Minimal maintenance

Effective Products: PSR2 Plus APR-2

Membranes

- Highly effective
- Removes dissolved solids

Effective Products:

Vantage[®] Product Line

PFC4 Resin vs GAC: Capacity (PFOA + PFOS)

Boodoo, Francis & Kennedy, Sean & Campos, Jonathan. (2017). REMOVAL OF PFOA, PFOS AND OTHER PFAS SUBSTANCES USING ION EXCHANGE.

Summary

- Biological Treatment & Advanced Oxidation
 Process (AOP) are proven technologies for APIs
- At-Source Treatment is the best
- Estrogenicty & API removal of greater than 99.9% have been achieved in full scale treatment
- Carbon and Ion Exchange are best for PFOS/PFOA
- Treatability studies & process modeling tools are very helpful to develop design criteria & fate assessments

Thank You!

Jcleary@Geosyntec.com

