A Green and Practical Approach for Removing PFAS from Contaminated Environments

Yanna Liang, Ph.D., PE, BCEE

Department of Environmental and Sustainable Engineering

What are PFAS?

Barlett and Davis, Remediation, 2018, 28:53-57.

History and use of PFAS

PFAS ¹	Development Time Period								
	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	
PTFE	Invented	Non-Stick Coatings			Waterproof Fabrics				
PFOS		Initial Production	Stain & Water Resistant Products	Firefighting foam				U.S. Reduction of PFOS, PFOA, PFNA (and other select PFAS ²)	
PFOA		Initial Production		otective oatings					
PFNA					Initial Production	Architectural Resins			
Fluoro- telomers					Initial Production	Firefighting Foams		Predominant form of firefighting foam	
Dominant Process³		Electrochem	ical Fluorina	tion (ECF)				Fluoro- telomerization (shorter chain ECF)	
Pre-Invention of Chemistry / Initial Chemical Synthesis Production			/ Commercial Products Introduced and Used			Introduced			
PFOS, F 2. Refer to 3. The don	PFOA, and Section 3 ninant man	PFNA (perfluc 4.	prononanoic a	acid) are PFA	As. e; note, howev	-		a fluoropolymer. elomerization have	

Table 2-1. Discovery and manufacturing history of select PFAS

Interstate Technology Regulatory Council (ITRC): History and Use of Per- and Polyfluoroalkyl Substances (PFAS), 2017.

7 KR COLLEGE OF ENGINEERING AND APPLIED SCIENCES UNIVERSITY AT ALBANY State University of New York

Detection and regulation

- Organic fluorine compounds were first detected in human serum in 1960s.
- In 2006, EPA invited eight major leading companies in the PFAS industry to join in a 2010/2015 PFOA global stewardship program.
- In 2009, US EPA: 400 parts per trillion (ppt) and 200 ppt for PFOA and PFOS, respectively
- In May 2016, US EPA updated drinking water guideline for PFOS and PFOA: lifetime health advisory, a max. 70 ng/L, separately or combined.
- New Jersey: Sept 4, 2018, MCL for PFNA of 13 ng/L;
 March 13, 2019, an interim specific GW quality standard for PFOA and PFOS, each at 10 ng/L.

Emerging awareness

Figure 3-1. Emerging awareness and emphasis on PFAS occurrence in the environment (Source: J. Hale, Kleinfelder, used with permission)

Interstate Technology Regulatory Council (ITRC): History and Use of Per- and Polyfluoroalkyl Substances (PFAS), 2017.

Exposure to PFAS

8/22/17

Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)

Frequently Asked Questions

What are PFAS?

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large group of man-made chemicals that have been used in industry and consumer products worldwide since the 1950s.

- · PFAS do not occur naturally, but are widespread in the environment.
- · PFAS are found in people, wildlife and fish all over the world.
- Some PEAS can stay in people's bodies a long time.
- Some PFAS do not break down easily in the environment.

How can I be exposed to PFAS?

PFAS contamination may be in drinking water, food, indoor dust, some consumer products, and workplaces. Most non worker exposures occur through drinking contaminated water or eating food that contains PFAS.

Although some types of PFAS are no longer used, some products may still contain PFAS:

- Food packaging materials
- Nonstick cookware
- Stain resistant carpet treatments
- Water resistant clothing
- Cleaning products
- Paints, varnishes and sealants
- Firefighting foam
- Some cosmetics

How can I reduce my exposure to PFAS?

PFAS are present at low levels in some food products and in the environment (air, water, soil etc.), so you probably cannot prevent PFAS exposure altogether. However, if you live near known sources of PFAS contamination, you can take steps to reduce your risk of exposure.

- If your drinking water contains PFAS above the EPA Lifetime Health Advisory. consider using an alternative or treated water source for any activity in which you might swallow water:
 - drinking
 - » food preparation
 - cooking
 - > brushing teeth, and
 - preparing infant formula
- Check for fish advisories for water bodies where you fish.
 - » Follow fish advisories that tell people to stop or limit eating fish from waters contaminated with PFAS or other compounds.
 - » Research has shown the benefits of eating fish, so continue to eat fish from safe sources as part of your healthy diet.

COLLEGE OF FNGINEERING Hu et al., Env. Sci. Technol. Letter. 2016 AND APPLIED SCIENCES UNIVERSITY AT ALBANY

https://www.atsdr.cdc.gov/pfas/docs/pfas fact sheet.pdf

State University of New York

PFAS contaminated sites close to Albany, NY

Specific industries:

- St Gobain Performance Plastics, Honeywell at Hoosick Falls: PFOA, PFBA, PFHxA, PFHpA, PFPeA, PFNA, PFOS
- Taconic Plastics at Town of Petersburgh, PFOA dominant

Use of Aqueous Film Forming Foam (AFFF)

 Stewart Air National Guard Base, DOD, City of Newburgh, PFOS and many other PFAS

http://www.dec.ny.gov/chemical/108831.html

PFOA in contaminated aquifer

COLLEGE OF ENGINEERING AND APPLIED SCIENCES UNIVERSITY AT ALBANY State University of New York

https://www.dec.ny.gov/docs/administration_pdf/mccdatasummary.pdf

How to remove PFAS?

Phytoremediation – plant-microbe-soil interactions

Truua et al., Phytoremediation And Plant-Assisted Bioremediation In Soil And Treatment Wetlands: A Review. The Open Biotechnology Journal, Volume 9, 2015

Juncus effusus – hydroponic experimental design

Plant	Conc. range (µg/L)	Harvest time (days)	Replicates	Note
Yes	0	21	3	No PFAS control
Yes	1x	7	3	
Yes	1x	14	6	
Yes	1x	21	6	
Yes	10x	7	3	
Yes	10x	14	3	
Yes	10x	21	6	
No	10x	21	6	No plant control
No	10x	21	3	With sodium azide (8 mM)

PFAS	Abbr.	Designed	Conc.	Conc. Real Conc. in each bottle		
	ADDI.	1x (µg/L)	10x (µg/L)1x (µg/L)		10x (µg/L)	
Perfluoropentanoic acid	PFPA (C5)	66	660	76.44±6.30	604.46±62.83	
Perfluorobutanesulfonic acid	PFBS (C4)	110	1100	115.00 ± 7.61	1172.28±113.83	
Perfluorohexanoic acid	PFHxA (C6)	120	1200	115.29 ± 8.70	1183.03±96.59	
Perfluoroheptanoic acid	PFHpA (C7)	75	750	80.40 ± 7.25	810.31±73.16	
Perfluorohexanesulfonic acid	PFHxS (C6)	290	2900	272.19 ± 20.20	2876.20 ± 267.57	
Perfluorooctanoic acid	PFOA (C8)	250	2500	288.72 ± 25.29	3065.86 ± 144.08	
Perfluorooctanesulfonic acid	PFOS (C8)	4300	43000	4104.59±466.43	44088.64±3822.62	

Experimental procedure

- Mesocosms were established in a greenhouse.
- Plants were harvested on day 7, 14, and 21.
- For PFAS analysis, roots and shoots are separated, freeze-dried and subject to extraction and analysis by LC/MS/MS.
- For stress study, fresh roots and shoots were separated and homogenized on ice and subject to analysis of H_2O_2 content, activities of superoxide dismutase (SOD) and catalase (CAT).

Optimized LC/MS/MS parameters for target PFAAs

Compound	Retention time	Quantitation transition	Collision energy	
	(min)	(m/z)	(eV)	
PFPA	7.60	263→219.0	12	
PFBS	8.78	299.0→80.0	40	
PFHxA	8.57	313.0→269.0	12	
PFHpA	9.40	363.0→319.0	13	
PFHxS	10.42	399.0→80.0	40	
PFOA	10.18	413.0→369.0	13	
PFOS	11.98	499.0→80.0	40	
¹³ C-PFHxA	8.57	315.0→270.0	12	
¹³ C-PFOA	10.18	415.0→370.0	13	
¹³ C-PFOS	11.98	503.0→80	40	

Plant growth

PFAS mass recovery

Control

Day 7

Day 21

Day 14

Variable	Factor	<i>p</i> value	Variable	Factor	<i>p</i> value
	TimePoint	< 0.001***		TimePoint	0.562
PFPA conc. in shoots	Conc.	< 0.001****	PFPA conc. in roots	Conc.	< 0.001*
	TimePoint × Conc.	0.113		TimePoint × Conc.	0.666
	TimePoint	< 0.001***		TimePoint	0.006**
PFBS conc. in shoots	Conc.	< 0.001***	PFBS conc. in roots	Conc.	< 0.001*
	TimePoint × Conc.	< 0.001****		TimePoint × Conc.	0.045*
	TimePoint	< 0.001****		TimePoint	0.013*
PFHxA conc. in shoots	Conc.	< 0.001****	PFHxA conc. in roots	Conc.	< 0.001*
	TimePoint × Conc.	< 0.001****		TimePoint × Conc.	0.066
	TimePoint	< 0.001***		TimePoint	0.036*
PFHpA conc. in shoots	Conc.	< 0.001****	PFHpA conc. in roots	Conc.	< 0.001*
	TimePoint × Conc.	0.016*		TimePoint × Conc.	0.104
	TimePoint	0.009**		TimePoint	0.191
PFHxS conc. in shoots	Conc.	< 0.001****	PFHxS conc. in roots	Conc.	< 0.001*
	TimePoint × Conc.	0.074		TimePoint × Conc.	0.102
	TimePoint	< 0.001***		TimePoint	< 0.001*
PFOA conc. in shoots	Conc.	< 0.001****	PFOA conc. in roots	Conc.	< 0.001*
	TimePoint × Conc.	< 0.001****		TimePoint × Conc.	0.001**
	TimePoint	0.002**		TimePoint	0.013*
PFOS conc. in shoots	Conc.	< 0.001****	PFOS conc. in roots	Conc.	< 0.001*
	TimePoint × Conc.	0.016*		TimePoint × Conc.	0.287

State University of New York

Bioconcentration factor (BCF) and translocation factor (TF)

PFAAs removal efficiency

Correlation between carbon chain length of PFAAs and translocation factors (TF)

Correlation between logKow and logBCF of PFAAs

Plant response

Results

- Approximately 11.4% of spiked PFAAs were removed by *J. effusus* when it was exposed to PFAAs at a total of 4.635 mg/L for 21 days.
- Except PFOS, the other six PFAAs had higher concentrations in the shoots than those in the roots.
- Accumulation in shoots increased with decreased carbon-chain length.
- No visible impacts to plant growth was observed.
- Exposure to PFAAs stimulated anti-oxidative defense system in J. effusus shoots but inhibited the superoxide dismutase (SOD) and catalase (CAT) activities and damaged the anti-oxidative defense system in J. effusus roots.

Further studies

- Since this study was performed in December with a daylight time of < 9 hours, it would be interesting to evaluate plant uptake in summer.
- Plant uptake with a longer duration needs to be investigated.
- Real PFAS-contaminated water needs to be studied considering the possible presence of other non-PFAS compounds.
- Other plant species needs to evaluated for PFAS remediation.
- Plant-microbe-soil interactions deserve to be studied.

Acknowledgement

At UAlbany

- Dr. Weilan Zhang
- Dr. Dongqing Zhang

At Rensselaer Polytechnic Institute (RPI) Dr. Dmitri V. Zagorevski

Funding support: UAlbany

Thank you!

