Optimized Treatment of 1,4-Dioxane in Extracted Groundwater and Reinjection for Aquifer Replenishment

Steve Woodard, Ph.D, P.E. *President*

Project location

Groundwater remediation lifecycle

Remediation timeline

1988: Initiate Groundwater Extraction and Treatment with Thermal Oxidation/Carbon Adsorption

1996: Initiate Soil Vapor Extraction and Air Sparging

2001: Regulatory NFA for Soil Vapor Extraction/Air Sparging

2003: Convert Groundwater Treatment System to Bioreactor/Air Stripper/sand filter/Carbon Adsorption

2004: Regulatory NFA for Soil Impacts

2008: Convert Groundwater Treatment System to Advanced Oxidation Process (HiPOx[®])/Carbon Adsorption

2011: Regulatory NFA for Soil Vapor Intrusion

2015: WDR permit issued for full-scale *reinjection of treated groundwater*

2016: Convert Groundwater Treatment to Synthetic Media System using AMBERSORBTM 560

What's being treated in groundwater?

Treatment complex

max concentration / discharge limit in $\mu g/L$

I,4-dioxane

- Stabilizer for chlorinated solvents, e.g. 1,1,1-TCA
- Wetting agent for polyester and paper processing
- Residue in cosmetics, shampoos, automotive coolants, fumigants

Quick refresher: Why is 1,4-dioxane such a challenge to treat?

- Miscible in water
- Low volatility, low sorption
- Difficult to measure
- Difficult to remediate (recalcitrant)
- Travels rapidly in subsurface; plume often extends beyond extraction wells
- Once discovered, often the driver for cleanup

Installed bioreactor/air stripper/GAC in 2003

Converted to HiPOx in 2008

Outside view of HiPOx system

Reinjection goals (year 2015)

- Maintain higher sustainable extraction rates during drought conditions (extraction yield dropped to < 5 gpm)
- Increase contaminant mass removal by enhanced soil flushing.
- Reduce contaminant mass/concentrations around the extraction well locations.
- Bypass NPDES monitoring for storm drain discharge

Challenges with AOP system

- Desorption of 1,4-dioxane from GAC polish vessels
- Drought conditions had caused reduced flowrate: 50→7 gpm
- High O&M costs eventually became prohibitive
- Needed a new oxygen/ozone generator
- Wanted to get away from chemical use

Project objectives

- Perform lifecycle cost analysis of HiPOx upgrade/replacement options:
 - Upgrade existing HiPOx system
 - Replace with UV/Ox
 - Replace with Ambersorb
- Select best alternative
- Install/startup/operate for 8 to 12 more years

Synthetic media treatment system upgrade

AMBERSORB[™] 560 (Ambersorb) adsorption system

- Carbonaceous resin with exceptional sorptive properties
- Removes 1,4-dioxane consistently to < 0.3 ppb
- Simple, low-maintenance system
 - Two media vessels in series (lead-lag operation)
 - Lead vessel periodically regenerated with steam
- No vapor discharge (eliminate AQMD permit)
- No carbon polish (eliminates desorption issue of 1,4dioxane)

Ambersorb system design basis

Parameter	Design Condition	Effluent Limits
Average Flow Rate	2-24 gpm	
Total VOCs	1,364 μg/L	Varies
1,4-dioxane	8.2 μg/L	≤ 3.0 µg/L
BTEX	642 μg/L	Varies
Influent Water Temp.	68-70°F	≤ 100°F
Regeneration	@ 7 gpm: Every 45 Days	
Frequency	@ 24 gpm: Every 9 Days	

Lifecycle cost analysis: Ambersorb vs. HiPOx

- Projected System Operations (~8 to 12 yrs)
- 7 gpm payout at 5 yrs
- 24 gpm payout at 8 yrs

Treatment System Cost Analysis

Results and discussion

Ambersorb system first year operations

Parameter		Results		
Flow	Cumulative	850,000 gallons		
FIOW	average	4 gpm		
1 4 diaxana Cana	range	<1.0 μg/L to 79 μg/L		
1,4-dioxarie conc.	average	31 μg/L		
Influent Water Temp	range	56°F to 98°F		
	average	77°F		
Regeneration	range	~45 days to ~90 days		
Frequency	average	~60 days to ~90 days		
Note: All discharge conditions were well within permit limits.				

Ambersorb Treatment System Module

Ambersorb system discharge compliance

February 2018 Summary

Monitoring Parameter	Discharge Limits	Units	Results
Total Dissolved Solids	1,700	mg/L	1,100
Chloride	270	mg/L	150
Sulfate	720	mg/L	330
Boron	1.0	mg/L	0.57
рН	6.5-8.5	SU	7.4
VOCs	Varies	ug/L	Non-Detect (all)
1,4-dioxane	3.0	ug/L	Non-Detect

Breakthrough Curves - Loading Cycles 1 Through 6

Summary of results / lessons learned

- Groundwater extraction/reinjection has been maintained at 2 to 10 gpm with minimal system maintenance.
- Ambersorb regeneration frequency has been low (typically 2 months between regens)
- Treatment has been fully effective (no effluent detections)
- O&M savings as projected
- Reinjection water is not fully captured by extraction wells
 - Response action includes temporary conversion from reinjection (WDR) to storm drain (NPDES)

Questions?

Steve Woodard 207-210-1551 swoodard@ect2.com