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We will begin our presentation in a few minutes…  
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Prof. Boya Xiong
Assistant professor
University of Minnesota, Twin Cities

NOVEL INSIGHTS INTO NANOPLASTIC RELEASE IN NATURAL 
ENVIRONMENT

AAEES member



We use a lot of plastics in modern life
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THE LINEAR AND LEAKY PLASTIC CYCLE



Source and impact of plastic debris in 
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Microplastic and nanoplastics are break down 
products of large plastic debris
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Mission of Xiong lab: expand method and knowledge of polymer 

degradation in the environment
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Source and impact of 
plastic debris in natural 

environment

~24%

Urban, industrial
Agricultural

Transport by water

Transport by wind



Shear,
turbulenceSand 

abrasion
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2. Mechanical 
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Proposed abiotic degradation pathways that generate 
micro/nanoplastics on land and water
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Abrasive wear at the initial contact is at nanoscale
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nanoroughness
D ~ 300 nm
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Nanoscale control and measurement of abrasive wear to 
quantify nanoplastic release per input force

Controlled 

normal force
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3D high-res 

topography imaging
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Nanoscale wear of virgin LDPE is primarily abrasive 
ploughing wear, release little debris
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Quantifying nanoscale wear rate at single 
asperity level (µm3/µm∙µN)

From pile-up: 1.0×10-3 µm3/µm∙µN

R2= 0.99, 2.8×10-4 

R2=0.95, 
1.0×10-3 

0.015
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0.005

Calculate 

volume

3D topography image



Impact of photo-oxidation: increase in 
wear rate and shift of wear mechanism

Increased by 
~5-fold
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Ploughing CuttingWedge formation
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Impact of photo-oxidation: increase in 
wear rate and shift of wear mechanism



Ploughing CuttingWedge formation
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20 month Boulder 
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Photo-oxidation
Virgin

Photo-oxidation increase in wear rate and increase the 
likelihood of wear release as nanoplastics

β’: fraction of wear can be 
released as nanoplastics



For the first time, we estimate nanoplastic release at 
single asperity level
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Sliding using gentle 
force (~300 nN) 

Unpublished 
results

1 μm 1 μm

Measuring actual release of nanoplastics



Beach, soil erosion

?

Microplastics

 
<5 mm

Nanoplastics

 <1 𝜇m
Macroplastics 

50-100 mm            20-50 mm                     10-20 mm         5-10 mm

Hard to detect
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scale



Q and A 

If you have a question, just click on the Q and A icon on 
the bottom of the screen and type it in there. 



Nicole Fahrenfeld, PhD
Associate Professor
Rutgers, The State University of New Jersey

Microplastic pollution

AAEES member
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Plastics production 
continues to increase

Source: Our World in Data

…and is harder to ignore



Source: Hale et al. JGR Oceans.

Improve our ability to measure 
environmental microplastics

Characterize MP in 
stormwater

Understand estuarine distribution 
and entry into food web



Peroxide
Cellulose 
digestion

Lipid and protein 
digestion

Density separation

• Losses due to heating?
• Losses of dense polymers?

• Limited adoption in 
         the literature to date



Impact of subsampling 
on polymer diversity and 
MP concentrations ?

Subsampling 
strategies
…beware of those based on 
visual ID only!

 



Subsampling impacts on polymer diversity 
and concentration
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Sampling Date and Site
Zooplankton 

Species

Ingestion 
Incidence

(MP individual-1)
 Average   SD

7/26/2018   Site 2 A. tonsa 0.30  0.07
4/11/2019   Site 4 A. tonsa 0.73  0.09

Site 5 P. crassirostris 0.60  0.08
Site 6 P. crassirostris 0.74  0.14

4/16/2019   Site 1 A. tonsa 0.69  0.13
Site 2 C. typicus 0.82  0.48
Site 3 A. tonsa 0.51  0.14



Impact of nitric acid 
digestion on ability to 
accurately ID polymers 
extracted from biota?

Treatment Analysis

Interpretation



None
Bleaching

Particle size change
Fragmentation

Other

Percent



Improve our ability to measure 
environmental microplastics

Characterize MP in 
stormwater

Understand estuarine distribution 
and entry into food web

Consider subsampling strategy to capture 
MP concentration and polymer diversity, 
biases introduced by acid digestions

Stormwater is an important pathway of 
entry with a diverse range of polymer 
types, buoyant and non-buoyant

Frontal zones can concentration 
microplastics, particle size distribution 
varies spatially



1917676



Q and A 

If you have a question, just click on the Q and A icon on 
the bottom of the screen and type it in there. 



Fabrizio Sabba, PhD, ENV SP

Process Engineering Associate
Black & Veatch

Using Low Dissolved Oxygen for Energy-Efficient 
Biological Nitrogen Removal
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Typically 50% of 
energy costs!

Why are we concerned with oxygen concentrations in wastewater?

48



The solution is in the nitrogen cycle

49
*Sabba et al., Applied Microbiology and Biotechnology 2018

Nitrification (Comammox)
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-        NO3

-
1.5O2

0.5O2

Nitrification (aerobic)

Conventional Biological N Removal: 

Nitrification/ Denitrification

AOB NOB

Highly energy intensive due to high dissolved oxygen concentrations 
(>3 mg/L), and required high levels of organic carbon

High O2 (Energy) Requirements

Leveraging Metabolic Versatility in the Microbial N Cycle for 
Sustainable Nutrient Removal

50
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Leveraging Metabolic Versatility in the Microbial N Cycle for 
Sustainable Nutrient Removal
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COMplete AMMonia OXidation 51

Nitrospira



• Comammox form two distinct clades within 
the genus Nitrospira1

• Comammox Nitrospira appear to be 
adapted to an oligotrophic lifestyle with 
low NH4

+, and possibly also low dissolved 
oxygen2

Koch et al. 2018 AMAB (doi.org/10.1007/s00253-018-9486-3 )

Clade A

Clade B

Non-comammox 
Nitrospira

1. Daims et al. 2015 Nature 428: 504-509
2. Kits et al. 2017 Nature 549: 269-272.

Comammox Diversity, Putative Niche, 
and Relevance to Practice 



1. Elucidate the impacts of DO on different nitrifying 
communities

2. Use bench scale data to estimate kinetic rates via model 
data fitting across the facilities

3. Determine key microbial players via 16S rRNA amplicon 
sequencing and qPCR

53

Research Objectives
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Parameter CRWS plant TMCRWS plant DCRWS plant

Total SRT 10-12 d 12-14 d 8.5 d

MLSS (average) 6,000 mg L-1 5,800 mg L-1 3,800 mg L-1

DO (average) Based on DO setpoints 5.0 mg L-1 2.33 mg L-1

Aeration strategy ABAC System N/A N/A

Bio-P Yes No Yes

Settleability Avg SVI= 55 mL g-1 Avg SVI= 85 mL g-1 Avg SVI= 85 mL g-1

BNR configuration A/O Process CAS A2/O Process

Tested Facilities

54
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Plant DO tested (mgDO L-1)

CRWS 0.25, 0.75, 1.5 and 8.0 mg L-1

TMCRWS 0.25, 0.75, 1.5 and 8.0 mg L-1

DCRWS 0.25, 0.75, 1.5 and 8.0 mg L-1

Experimental Setup
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Ammonia Removal Rates
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16 and qPCR analysis shows significant presence of NOB

59



Targeted qPCR shows presence of comammox

60



Kinetics Parameters Estimation

61
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Kinetics Parameters Estimation



Key Takeaways – Strategies for energy and resource efficient N removal 

1) Low DO-adapted biomass achieve highest removal 
rate and maxes out at lowest DO → higher DO 
would be a waste of energy

2) Comammox Nitrospira was found in both   
     plants with longer SRT → crucial parameter   
     for selection

3) Two strains with different affinity for oxygen  
     were found in comammox Nitrospira was 
     found in both plants with long SRT

63



From (near) Zero to Hero 
How Microbes Thrive in Low Dissolved Oxygen Water Resource Recovery Facilities

Apparent resiliency of
microbial populations 
adapted to low DO

High nitrification rates 
at different DO 
concentrations





Q and A 

If you have a question, just click on the Q and A icon on 
the bottom of the screen and type it in there. 



Greg Lackey, Ph.D.
Research Engineer
National Energy Technology Laboratory

Data Driven Approaches for Understanding Oil and Gas Well Integrity

AAEES Member



(Sabbatino et al., 2017)

There are millions of oil and gas wells in the United States

(Ted Wood, The Guardian)

Wikipedia

PA DEP

Modern Unconventional Well Pad

Abandoned Well

Orphaned Well



Wells that leak pose an environmental risk

However, intact wells present opportunities as well

(Kang et al., 2023)



Historic levels of funding are currently available for plugging 
orphaned and marginally productive wells

Bipartisan Infrastructure Law: $4.7 billion
Inflation Reduction Act: $350 million

(Pekney et al., 2024)(Boutot et al., 2022)

Orphaned Wells Marginal Wells 

Documented: >126k
Undocumented: 300k-800k

Total:~598k



Most states prioritize leaking wells for plugging

Iyer et al., In Review

Leaking wells also a priority for other subsurface energy operations



Well leaks require both a source and a pathway

Sources: producing/intermediate zones; Pathways: annuli, barrier flaws
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Well integrity data are only available in a few U.S. states

(Modified from Schulz et al., in review)



The frequency of integrity issues varies widely across regions

(Lackey et al., 2021)

0.3%

19.2%

26.5%
21.3%

7.0%

10.7%

14.2%

22.2%



The Greater Wattenberg Area is an excellent case study

What drives well integrity issues? 

(Lackey et al., in review)



A relatively high percentage of GWA wells have experienced 
integrity issues

0 10000 20000 30000

WELLS

17.1%

8.2%

1955-2019

1955-2019
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17.1%
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(Lackey et al., in review)



Machine learning models make useful predictions about 
integrity issues and provide insight into drivers

Models predict probability (not magnitude) of integrity issue
(Lackey et al., in review)



Integrity issues are spatially clustered

(Lackey et al., in review)



Well location impacted likelihood of leakage

19.2%c

0 2000 4000 6000 8000

Tested

SCP (Pressure)

SCP (Geochem.)

WELLS

0 10000 20000 30000

WELLS

Inside Hot Spot Outside Hot Spot

37.8%

19.2%

9.7%

4.3%

Percentage of wells with integrity issues 
was ~4x greater inside hot spot

(Lackey et al., in review)



Integrity issues spatially align with geologic features

(Lackey et al., in review)



Older wells were not more likely to experience integrity issues
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Identifying clusters of integrity issues is practicable

Most states have compliance inspection programs that could be extended with 
similar models

1-10%
11-25%
26-50%
51-75%
76-100%

Compliance inspections in New York State



API 512308297 CBL Example

Working to incorporate other valuable information into models



Data availability is a challenge

Building tools to help states digitize their data



Tremendous opportunities to gather information on 
older wells

DOI “Plugging Away” Story Map, 2024



New EPA GHG reporting rules will fundamentally alter 
availability of well leakage data



Well integrity is important to monitor and maintain to 
preserve the subsurface as a resource

Clean Air Task Force, Class VI Map Lackey et al., 2023



Q and A 

If you have a question, just click on the Q and A icon on 
the bottom of the screen and type it in there. 



Would you like to attend our next webinar?  
We have several webinars happening in the near future. Go to https://www.aaees.org/events to reserve your spot.

Would you like to watch this webinar again? 
A recording of today’s event will be available on our website in a few weeks. 

Not an AAEES member yet? 
To determine which type of AAEES membership is the best fit for you, please go to AAEES.org 
or email Marisa Waterman at mwaterman@aaees.org.

Need a PDH Certificate? 
You will be emailed a PDH Certificate for attending this webinar within the next week.

Questions?  
Email Marisa Waterman at mwaterman@aaees.org with any questions you may have. 

Thank you for attending our webinar today. 

https://www.aaees.org/events
mailto:mwaterman@aaees.org
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