Climate Change in Southern California

Is Our 20th Century Water Infrastructure Equipped for 21st Century Climate?

Brianna Pagán¹, Moetasim Ashfaq², Deeksha Rastogi², Donald R. Kendall¹, Shih-Chieh Kao², Bibi S. Naz², Rui Mei²

Jeremy Pal¹ <jpal@lmu.edu>

¹. Loyola Marymount University
Department of Civil Engineering and Environmental Science
². Oak Ridge National Laboratory
Climate Change Science Institute
Where do we get our water?

75% of annual streamflow in California is snowmelt.

Climate change impacts on the hydrology of these basins is critical to our understanding of future Southern Californian water resources.

Reservoirs store surplus water in the spring for the summer when demands are highest.

Large reservoirs store water during periods of surplus to get us through multi-year droughts.
Greenhouse Gas Concentrations (0 - 2014)

- Carbon Dioxide (CO$_2$) – 43% increase
- Nitrous Oxide (N$_2$O) – 21% increase
- Methane (CH$_4$) – 140% increase

Data Source: NOAA
Global Surface Temperature Differences from 1951-1980

Most of the warming has occurred in the past 50 years or so (as have most of the anthropogenic greenhouse gas emissions).

- The 18 warmest years have occurred in the past 21 years.
- 1976 was the last cooler than normal year.

The observed warming signal is considerably greater than the fluctuations resulting from natural global climate drivers such as El Niño, La Niña, and volcanic eruptions.

Temperatures in the Western US have increased by 2 to 4°F over the past century, which is well above the global average.

Sources: NASA (T) & NOAA (ENSO)
Climate Models or Earth System Models

3D representations of the major components of the Earth system, including the land surface, atmosphere, oceans, and ice.

Used to simulate a variety of processes, such as climate change, land cover change.
Climate Model Simulations of the Past (1900-2005)
CO₂ Concentrations from the Past 800,000 years (ice cores)

IPCC RCP Scenarios

Our period of interest

CO₂ in 2100 (business as usual)
6.3°F COP21 Current ”Paris” Commitment
3.6°C COP21 Minimum Hoped For ”Paris” Pledge
Current Level

Pre-Industrial Anthropogenic Future
Projected Global Surface Temperature Change

Global temperature projections range from 1 to 3°F by 2050 regardless of the greenhouse gas concentration scenario.

Spread indicates range of possible futures.

Current Temperature

Our period of interest
Climate Change Projection Simulations

Ten Global Climate Models (~150-km)

Regional Climate Model (18-km)

Greenhouse Gas Concentrations:
- Historical (1976-2005)
- RCP 8.5 Future Scenario (2021-2050)

Simulations performed on ORNL’s Titan – The fastest supercomputer in the US.

To date, the most comprehensive and highest resolution assessment.

Hydrologic Model (4-km)

Climate Change Impacts on Water Resources:
Projected Temperature Changes
2021-2050 minus 1976-2005

Temperatures are projected to increase an additional 2 to 4°F by 2050, which is higher than the global average.

The largest increases at projected at higher elevations due to snow related changes in surface albedo (reflectivity).
Projected Precipitation Changes
2021-2050 minus 1976-2005

2 to 4% increase in precipitation, but with a large range of uncertainty.

<table>
<thead>
<tr>
<th>Basin</th>
<th>Ensemble Average</th>
<th>Ensemble Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado River</td>
<td>+3%</td>
<td>-4 to 21%</td>
</tr>
<tr>
<td>Owens Valley – Mono Lake</td>
<td>+3%</td>
<td>-10 to 16%</td>
</tr>
<tr>
<td>Sacramento River</td>
<td>+4%</td>
<td>-13 to 12%</td>
</tr>
<tr>
<td>San Joaquin – Tulare Lake</td>
<td>+2%</td>
<td>-11 to 15%</td>
</tr>
</tbody>
</table>
Projected Runoff Changes
2021-2050 minus 1976-2005

-1 to 9% change in runoff at basin level, but with a large range of uncertainty.

<table>
<thead>
<tr>
<th>Basin</th>
<th>Ensemble Average</th>
<th>Ensemble Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado River</td>
<td>+9%</td>
<td>-3 to 50%</td>
</tr>
<tr>
<td>Owens Valley – Mono Lake</td>
<td>+9%</td>
<td>-13 to 35%</td>
</tr>
<tr>
<td>Sacramento River</td>
<td>+2%</td>
<td>-30 to 22%</td>
</tr>
<tr>
<td>San Joaquin – Tulare Lake</td>
<td>-1%</td>
<td>-27 to 30%</td>
</tr>
</tbody>
</table>
Projected 50-year Cumulative Annual Runoff Changes
2021-2050 minus 1976-2005

Increased periods of surplus and deficit (Except OV-ML)
- Less normal years
- Multi-year storage solutions
- Less reliability

<table>
<thead>
<tr>
<th>Basin</th>
<th>Wet Periods</th>
<th>Dry Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado River</td>
<td>+20% (14 yr)</td>
<td>+3% (38 yr)</td>
</tr>
<tr>
<td>Owens Valley – Mono Lake</td>
<td>+10% (26 yr)</td>
<td>-4% (69 yr)</td>
</tr>
<tr>
<td>Sacramento River</td>
<td>+3% (42 yr)</td>
<td>+13% (29 yr)</td>
</tr>
<tr>
<td>San Joaquin – Tulare Lake</td>
<td>+6% (38 yr)</td>
<td>+10% (36 yr)</td>
</tr>
</tbody>
</table>
Snowpack and Runoff Timing Changes:

More precipitation falls as Rainfall and snow melts earlier.

- Storage and flood Issues

Winter water levels in many reservoirs are kept low for flood control purposes, as occurred this past winter.

- In conflict with storage needs!

Snowpack decreases up to 75%.

Streamflow arrives up to 10 days earlier.
Extreme precipitation events are projected to occur 2 to 8 times more frequently by 2050.

Winter reservoir water levels may need to be further lowered for additional flood control.

In urban environments, flood control channel capacities may need to be increased.
Climate change in 2010 California Urban Water Management Plans (sample of 59 of 422 submitted)

Only 41% of sampled UWMPs from California water agencies directly addressed how climate change would impact the agency’s service area.

Adapted from Conrad, 2013
Our Future Water Cycle

- Substantial reductions in snowfall (and snowpack).
- Earlier snowmelt
- Increase in “rain flood” risk
- Substantial increase in extreme storm frequency and intensity
- Higher irrigation demands
- Higher evaporative losses from reservoirs
- Increased summer water deficit and decreased spring surplus

Our current infrastructure in California is not equipped to handle the increased future winter storage and flood control requirements.
Potential Adaptation Solutions

Conservation:
• Expected population increases are likely to negate conservation measures.
• Implement efficient irrigation practices and change to lower water use agriculture.

Management:
• Implement Forecast Informed Reservoir Operations (FIRO).
• Agriculture to urban water transfers.

Recycled Water Direct Reuse: Reduce negative public perception.

Groundwater: Increase groundwater banking and reduce groundwater mining.

Existing Infrastructure:
• Raise in-stream storage structures.
• Reduce conveyance channel and pipe leakage and cover aqueducts.

New Infrastructure:
• Stormwater Capture
• Delta 2 Tunnels – Perhaps as a last resort