

Moving DPR Forward: Research Efforts and Real World Experience

Shane Trussell, Ph.D., P.E., BCEE Trussell Technologies, Inc. October 12, 2017

California's Big Question

Is it <u>feasible</u> to do potable reuse without an environmental buffer (DPR)?

Division of Drinking Water (DDW)

California's Big Question

California's Big Question

California Direct Potable Reuse Initiative

- Began in 2012 and raised more than \$6M for research to develop information for the State Expert Panel
- WRRF 14-12 (DPR Demonstration Project) was a \$2M project funded by CA DWR

DPR Conclusions

- CA State Expert Panel conducted DPR feasibility assessment using WRRF 14-12 data; concluded it is feasible to create uniform regulations for DPR
- Expert Panel recommended 6 topics for further research

Research Topics Relate to Public Health Protection Pathogens

Giardia

Chemicals

Research Topics Relate to Public Health Protection **Pathogens Quantitative Microbial Outbreak Monitoring Risk Assessment** Pathogen Monitoring Source Control Control of Non-Targeted HOSPITAL Chemical Analysis and Low Peaks Molecular Weight Compounds **Chemicals**

Pathogen and Outbreak Monitoring

Pathogens

Higher concentrations require higher degree of treatment

Higher concentrations require higher degree of treatment

Lower concentrations require lower degree of treatment *

Pathogen and Outbreak Monitoring

- Why is this important?
 - Critical for defining safe levels of treatment
 - Improved understanding of the factors that affect pathogen loading
 - Seasonality, outbreaks, geography, community health
 - Aids in understanding and crediting pathogen removal through wastewater treatment plants

Ongoing Research: Pathogen Monitoring

- Ongoing pathogen monitoring campaigns
 - City of Oceanside: 17 sampling events
 - City of San Diego's NCWRP: 24 sampling events
- Research studies to improve pathogen monitoring
 - WE&RF 14-17: Non-culture based methods for pathogen monitoring in potable reuse (White Paper)
 - WE&RF 15-07: Methods for measurement of infectivity and concentration of pathogens
 - WRF 4508: Assessment of techniques to evaluate and demonstrate the safety of water from DPR treatment facilities

QMRA

QMRA

- Why is this important?
 - We set risk-based goals for the safety of conventional drinking water
 - DPR should provide the same level of safety
 - QMRA allows us to quantify the safety of different DPR systems
 - Provides insight into criteria that can inform DPR regulations
- Why is QMRA a powerful tool?
 - Accounts for multiple aspects of a Besystems including aks
 - Process performance
 Impact of failures
 - Treatment train configuration

WRRF 14-12: QMRA of DPR Treatment Train

WATE

CrossMark

Research Topics Relate to Public Health Protection **Pathogens Quantitative Microbial Outbreak Monitoring Risk Assessment** Pathogen Monitoring Source Control Control of **Non-Targeted** HOSPITA Chemical Analysis and Low Peaks **Molecular Weight** Compounds **Chemicals**

RO Provides Excellent Chemical Control

RO is effective at removing most chemicals…

RO Provides Excellent Chemical Control

Chemical Control and Detection

- Why is this important?
 - DPR facility is the last line of treatment with no environmental buffer
 - Research may identify which compounds remain in treated effluents (non-targeted analysis)
 - Solutions for controlling persistent chemicals should be identified
 - Solutions for controlling chemical peaks should be identified

WRRF 14-12: Chemical Challenge Testing

Graphics courtesy of Tackaert et al. (*submitted*) Enhanced Robustness of O₃/BAC-MF-RO-UV/HOCI 1 MGD Demonstration Potable Reuse Train for Removal of Acetone, Formaldehyde, NDMA, and 1,4-dioxane in Comparison to MF-RO-UV/H₂O₂ Full Advanced Treatment.

Research Topics Relate to Public Health Protection **Pathogens Quantitative Microbial Outbreak Monitoring Risk Assessment** Pathogen Monitoring Source Control Control of Non-Targeted HOSPITAL Chemical Analysis and Low Peaks Molecular Weight Compounds **Chemicals**

Enhanced Source Control

- Why is this important?
 - Source control works in tandem with treatment to reduce effluent chemical concentrations
 - DPR systems should actively track emerging health risks
 - New threats should be included in source control and monitoring

In addition to these research topics...

DPR Should Leverage GWR and SWA Experience

- Groundwater recharge
 - -40+ years of experience prior to final regulations
- Surface water augmentation
 - Provides opportunity to understand potable reuse with shorter response times (i.e., more direct)
- Phased DPR approach recommended by State Expert Panel, DDW, and AB 574

DPR Should Leverage GWR and SWA Experience

- Groundwater recharge
 - -40+ years of experience prior to final regulations
- Surface water augmentation
 - Provides opportunity to understand potable reuse with shorter response times (i.e., more direct)
- Phased DPR approach recommended by State Expert Panel, DDW, and AB 574

Thank you for listening!